ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanowire arrays exhibit efficient light coupling and strong light trapping, making them well suited to solar cell applications. The processes that contribute to their absorption are interrelated and highly dispersive, so the only current method of op timizing the absorption is by intensive numerical calculations. We present an efficient alternative which depends solely on the wavelength-dependent refractive indices of the constituent materials. We choose each array parameter such that the number of modes propagating away from the absorber is minimized while the number of resonant modes within the absorber is maximized. From this we develop a semi-analytic method that quantitatively identifies the small range of parameters where arrays achieve maximum short circuit currents. This provides a fast route to optimizing NW array cell efficiencies by greatly reducing the geometries to study with full device models. Our approach is general and applies to a variety of materials and to a large range of array thicknesses.
Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the e quivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption. To exploit such modes fully, arrays must include tightly clustered NWs that are unlikely to arise from fabrication variations but must be created intentionally.
Solar cell designs based on disordered nanostructures tend to have higher efficiencies than structures with uniform absorbers, though the reason is poorly understood. To resolve this, we use a semi-analytic approach to determine the physical mechanis m leading to enhanced efficiency in arrays containing nanowires with a variety of radii. We use our findings to systematically design arrays that outperform randomly composed structures. An ultimate efficiency of 23.75% is achieved with an array containing 30% silicon, an increase of almost 10% over a homogeneous film of equal thickness.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا