ﻻ يوجد ملخص باللغة العربية
Solar cell designs based on disordered nanostructures tend to have higher efficiencies than structures with uniform absorbers, though the reason is poorly understood. To resolve this, we use a semi-analytic approach to determine the physical mechanism leading to enhanced efficiency in arrays containing nanowires with a variety of radii. We use our findings to systematically design arrays that outperform randomly composed structures. An ultimate efficiency of 23.75% is achieved with an array containing 30% silicon, an increase of almost 10% over a homogeneous film of equal thickness.
Semi-transparent photovoltaics (ST-PV) provide smart spatial solutions to integrate solar cells into already-built areas. Here, we study the potential of semiconductor nanowires (NWs) as promising ST-PV. We perform FDTD simulations for different PV m
While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, we outline simp
Majorana zero modes in a superconductor-semiconductor nanowire have been extensively studied during the past decade. Disorder remains a serious problem, preventing the definitive observation of topological Majorana bound states. Thus, it is worthwhil
Nanowires (NWs) with a unique one-dimensional structure can monolithically integrate high-quality III-V semiconductors onto Si platform, which is highly promising to build lasers for Si photonics. However, the lasing from vertically-standing NWs on s
With the emergence of new photonic and plasmonic materials with optimized properties as well as advanced nanofabrication techniques, nanophotonic devices are now capable of providing solutions to global challenges in energy conversion, information te