ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing Photovoltaic Charge Generation of Nanowire Arrays: A Simple Semi-Analytic Approach

348   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn C. P. Sturmberg
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanowire arrays exhibit efficient light coupling and strong light trapping, making them well suited to solar cell applications. The processes that contribute to their absorption are interrelated and highly dispersive, so the only current method of optimizing the absorption is by intensive numerical calculations. We present an efficient alternative which depends solely on the wavelength-dependent refractive indices of the constituent materials. We choose each array parameter such that the number of modes propagating away from the absorber is minimized while the number of resonant modes within the absorber is maximized. From this we develop a semi-analytic method that quantitatively identifies the small range of parameters where arrays achieve maximum short circuit currents. This provides a fast route to optimizing NW array cell efficiencies by greatly reducing the geometries to study with full device models. Our approach is general and applies to a variety of materials and to a large range of array thicknesses.



قيم البحث

اقرأ أيضاً

We investigate the stability of a one-parameter family of periodic solutions of the four-vortex problem known as `leapfrogging orbits. These solutions, which consist of two pairs of identical yet oppositely-signed vortices, were known to W. Grobli (1 877) and A. E. H. Love (1883), and can be parameterized by a dimensionless parameter $alpha$ related to the geometry of the initial configuration. Simulations by Acheson (2000) and numerical Floquet analysis by Toph{o}j and Aref (2012) both indicate, to many digits, that the bifurcation occurs when $1/alpha=phi^2$, where $phi$ is the golden ratio. This study aims to explain the origin of this remarkable value. Using a trick from the gravitational two-body problem, we change variables to render the Floquet problem in an explicit form that is more amenable to analysis. We then implement G. W. Hills method of harmonic balance to high order using computer algebra to construct a rapidly-converging sequence of asymptotic approximations to the bifurcation value, confirming the value found earlier.
Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the e quivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption. To exploit such modes fully, arrays must include tightly clustered NWs that are unlikely to arise from fabrication variations but must be created intentionally.
The Starshot lightsail project aims to build an ultralight spacecraft (nanocraft) that can reach Proxima Centauri b in approximately 20 years, requiring propulsion with a relativistic velocity of ~60 000 km/s. The spacecrafts acceleration approach cu rrently under investigation is based on applying the radiation pressure from a high-power laser array located on Earth to the spacecraft lightsail. However, the practical realization of such a spacecraft imposes extreme requirements to the lightsails optical, mechanical, thermal properties. Within this work, we apply adjoint topology optimization and variational autoencoder-assisted inverse design algorithm to develop and optimize a silicon-based lightsail design. We demonstrate that the developed framework can provide optimized optical and opto-kinematic properties of the lightsail. Furthermore, the framework opens up the pathways to realizing a multi-objective optimization of the entire lightsail propulsion system, leveraging the previously demonstrated concept of physics-driven compressed space engineering
We describe an assembly of N Cooper-pair boxes (CPB) contained in a single mode cavity. In the dispersive regime, the correlation between the cavity field and each Cooper-pair box results in an effective interaction between CPBs that can be used to d ynamically generate maximally entangled states. With only collective manipulations, we show how to create maximally entangled quantum states and how to use these states to reach the Heisenberg limit in the determination of a spectroscopy frequency. This scheme can be applied to other types of superconducting qubits.
Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic lig ht concentration that enhances their performance as solar absorbers. Using numerical simulations we show, how light concentration is induced by high optical cross sections of the individual SiNWs but cannot be optimized independently of the SiNW array absorption. While an ideal spatial density exists, for which the SiNW array absorption for VIS and NIR wavelengths reaches a maximum, the spatial correlation of SiNWs in an array suppresses the formation of optical Mie modes responsible for light concentration. We show that different from SiNWs with straight sidewalls, arrays of inverted silicon nanocones (SiNCs) permit to avoid the mode suppression. In fact they give rise to an altered set of photonic modes which is induced by the spatial correlation of SiNCs in the array, and therefore show a higher degree of freedom to independently optimize light absorption and light concentration. Apart from explaining the good light absorbing and concentrating properties of SiNC arrays, the work justifies a revaluation of SiNW arrays as optical absorbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا