ترغب بنشر مسار تعليمي؟ اضغط هنا

We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas i n the Tonks-Girardeau (TG) or hard-core limit, after a trap quench from a double well to a single well. On the analytical side, thequadratic nature of the theory of QGHD is complemented with the emerging conformal invarianceat the TG point to fix the universal part of those quantities. Moreover, the well-known mapping ofhard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjectureto fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. Thefree nature of the TG gas also allows for more accurate results on the numerical side, where a highernumber of particles as compared to the interacting case can be simulated. The agreement betweenanalytical and numerical predictions is extremely good. For the density fluctuations, however, onehas to average out large Friedel oscillations present in the numerics to recover such agreement.
We introduce an extension of the generalised $Tbar{T}$-deformation described by Smirnov-Zamolodchikov, to include the complete set of extensive charges. We show that this gives deformations of S-matrices beyond CDD factors, generating arbitrary funct ional dependence on momenta. We further derive from basic principles of statistical mechanics the flow equations for the free energy and all free energy fluxes. From this follows, without invoking the microscopic Bethe ansatz or other methods from integrability, that the thermodynamics of the deformed models are described by the integral equations of the thermodynamic Bethe-Ansatz, and that the exact average currents take the form expected from generalised hydrodynamics, both in the classical and quantum realms.
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.
In the context of quantum field theory (QFT), unstable particles are associated with complex-valued poles of two-body scattering matrices in the unphysical sheet of rapidity space. The Breit-Wigner formula relates this pole to the mass and life-time of the particle, observed in scattering events. In this letter, we uncover new, dynamical signatures of unstable excitations and show that they have a strong effect on the non-equilibrium properties of QFT. Focusing on a 1+1D integrable model, and using the theory of Generalized Hydrodynamics, we study the formation and decay of unstable particles by analysing the release of hot matter into a low-temperature environment. We observe the formation of tails and the decay of the emitted nonlinear waves, in sharp contrast to the situation without unstable excitations. We expect these signatures of instability to have a large degree of universality. Our study shows that the out-of-equilibrium dynamics of many-body systems can be strongly affected not only by the spectrum, but also by excitations with finite life-times.
We derive an exact formula for the scaled cumulant generating function of the time-integrated current associated to an arbitrary ballistically transported conserved charge. Our results rely on the Euler-scale description of interacting, many-body, in tegrable models out of equilibrium given by the generalized hydrodynamics, and on the large deviation theory. Crucially, our findings extend previous studies by accounting for inhomogeneous and dynamical initial states in interacting systems. We present exact expressions for the first three cumulants of the time-integrated current. Considering the non-interacting limit of our general expression for the scaled cumulant generating function, we further show that for the partitioning protocol initial state our result coincides with previous results of the literature. Given the universality of the generalized hydrodynamics, the expression obtained for the scaled cumulant generating function is applicable to any interacting integrable model obeying the hydrodynamic equations, both classical and quantum.
30 - Benjamin Doyon 2020
One of the most profound questions of mathematical physics is that of establishing from first principles the hydrodynamic equations in large, isolated, strongly interacting many-body systems. This involves understanding relaxation at long times under reversible dynamics, determining the space of emergent collective degrees of freedom (the ballistic waves), showing that projection occurs onto them, and establishing their dynamics (the hydrodynamic equations). We make progress in these directions, focussing for simplicity on one-dimensional systems. Under a model-independent definition of the complete space of extensive conserved charges, we show that hydrodynamic projection occurs in Euler-scale two-point correlation functions. A fundamental ingredient is a property of relaxation: we establish ergodicity of correlation functions along almost every direction in space-time. We further show that to every extensive conserved charge with a local density is associated a local current and a continuity equation; and that Euler-scale two-point correlation functions of local conserved densities satisfy a hydrodynamic equation. The results are established rigorously within a general framework based on Hilbert spaces of observables. These spaces occur naturally in the $C^*$ algebra description of statistical mechanics by the Gelfand-Naimark-Segal construction. Using Arakis exponential clustering and the Lieb-Robinson bound, we show that the results hold, for instance, in every nonzero-temperature Gibbs state of short-range quantum spin chains. Many techniques we introduce are generalisable to higher dimensions. This provides a precise and universal theory for the emergence of ballistic waves at the Euler scale and how they propagate within homogeneous, stationary states.
We provide a simple geometric meaning for deformations of so-called $T{overline T}$ type in relativistic and non-relativistic systems. Deformations by the cross products of energy and momentum currents in integrable quantum field theories are known t o modify the thermodynamic Bethe ansatz equations by a CDD factor. In turn, CDD factors may be interpreted as additional, fixed shifts incurred in scattering processes: a finite width added to the fundamental particles (or, if negative, to the free space between them). We suggest that this physical effect is a universal way of understanding $T{overline T}$ deformations, both in classical and quantum systems. We first show this in non-relativistic systems, with particle conservation and translation invariance, using the deformation formed out of the densities and currents of particles and momentum. This holds at the level of the equations of motion, and for any interaction potential, integrable or not. We then argue, and show by similar techniques in free relativistic particle systems, that $Toverline T$ deformations of relativistic systems produce the equivalent phenomenon, accounting for length contractions. We also show that, in both the relativistic and non-relativistic cases, the width of particles is equivalent to a state-dependent change of metric, where the distance function discounts the particles widths, or counts the additional free space. This generalises and explains the known field-dependent coordinate change describing $Toverline T$ deformations. The results connect such deformations with generalised hydrodynamics, where the relations between scattering shifts, widths of particles and state-dependent changes of metric have been established.
A general, multi-component Eulerian fluid theory is a set of nonlinear, hyperbolic partial differential equations. However, if the fluid is to be the large-scale description of a short-range many-body system, further constraints arise on the structur e of these equations. Here we derive one such constraint, pertaining to the free energy fluxes. The free energy fluxes generate expectation values of currents, akin to the specific free energy generating conserved densities. They fix the equations of state and the Euler-scale hydrodynamics, and are simply related to the entropy currents. Using the Kubo-Martin-Schwinger relations associated to many conserved quantities, in quantum and classical systems, we show that the associated free energy fluxes are perpendicular to the vector of inverse temperatures characterising the state. This implies that all entropy currents can be expressed as averages of local observables. In few-component fluids, it implies that the averages of currents follow from the specific free energy alone, without the use of Galilean or relativistic invariance. In integrable models, in implies that the thermodynamic Bethe ansatz must satisfy a unitarity condition. The relation also guarantees physical consistency of the Euler hydrodynamics in spatially-inhomogeneous, macroscopic external fields, as it implies conservation of entropy, and the local-density approximated Gibbs form of stationarity states. The main result on free energy fluxes is based on general properties such as clustering, and we show that it is mathematically rigorous in quantum spin chains.
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the in evitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalise at late times. We show that the full thermalising dynamics can be described by the generalised hydrodynamics with diffusion and force terms, and we compare these predictions with numerical simulations. Finally, we provide an explanation for the slow thermalisation rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterised by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalisation can display pre-thermal plateau and relaxation dynamics with long polynomial finite-time corrections.
We theoretically investigate the effects of atom losses in the one-dimensional (1D) Bose gas with repulsive contact interactions, a famous quantum integrable system also known as the Lieb-Liniger gas. The generic case of K-body losses (K = 1,2,3,...) is considered. We assume that the loss rate is much smaller than the rate of intrinsic relaxation of the system, so that at any time the state of the system is captured by its rapidity distribution (or, equivalently, by a Generalized Gibbs Ensemble). We give the equation governing the time evolution of the rapidity distribution and we propose a general numerical procedure to solve it. In the asymptotic regimes of vanishing repulsion -- where the gas behaves like an ideal Bose gas -- and hard-core repulsion -- where the gas is mapped to a non-interacting Fermi gas -- we derive analytic formulas. In the latter case, our analytic result shows that losses affect the rapidity distribution in a non-trivial way, the time derivative of the rapidity distribution being both non-linear and non-local in rapidity space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا