ترغب بنشر مسار تعليمي؟ اضغط هنا

Free energy fluxes and the Kubo-Martin-Schwinger relation

63   0   0.0 ( 0 )
 نشر من قبل Benjamin Doyon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A general, multi-component Eulerian fluid theory is a set of nonlinear, hyperbolic partial differential equations. However, if the fluid is to be the large-scale description of a short-range many-body system, further constraints arise on the structure of these equations. Here we derive one such constraint, pertaining to the free energy fluxes. The free energy fluxes generate expectation values of currents, akin to the specific free energy generating conserved densities. They fix the equations of state and the Euler-scale hydrodynamics, and are simply related to the entropy currents. Using the Kubo-Martin-Schwinger relations associated to many conserved quantities, in quantum and classical systems, we show that the associated free energy fluxes are perpendicular to the vector of inverse temperatures characterising the state. This implies that all entropy currents can be expressed as averages of local observables. In few-component fluids, it implies that the averages of currents follow from the specific free energy alone, without the use of Galilean or relativistic invariance. In integrable models, in implies that the thermodynamic Bethe ansatz must satisfy a unitarity condition. The relation also guarantees physical consistency of the Euler hydrodynamics in spatially-inhomogeneous, macroscopic external fields, as it implies conservation of entropy, and the local-density approximated Gibbs form of stationarity states. The main result on free energy fluxes is based on general properties such as clustering, and we show that it is mathematically rigorous in quantum spin chains.



قيم البحث

اقرأ أيضاً

A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving t he NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corresponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
In this paper, we study the product of two complex Ginibre matrices and the loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the correlation functions). We obtain using Schwinger-Dyson equation (SDE) techniques the genera l loop equations satisfied by the resolvents. In order to deal with the product structure of the random matrix of interest, we consider SDEs involving the integral of higher derivatives. One of the advantage of this technique is that it bypasses the reformulation of the problem in terms of singular values. As a byproduct of this study we obtain the large $N$ limit of the Stieltjes transform of the $2$-point correlation function, as well as the first correction to the Stieltjes transform of the density, giving us access to corrections to the smoothed density. In order to pave the way for the establishment of a topological recursion formula we also study the geometry of the corresponding spectral curve. This paper also contains explicit results for different resolvents and their corrections.
We obtain long series expansions for the bulk, surface and corner free energies for several two-dimensional statistical models, by combining Entings finite lattice method (FLM) with exact transfer matrix enumerations. The models encompass all integra ble curves of the Q-state Potts model on the square and triangular lattices, including the antiferromagnetic transition curves and the Ising model (Q=2) at temperature T, as well as a fully-packed O(n) type loop model on the square lattice. The expansions are around the trivial fixed points at infinite Q, n or 1/T. By using a carefully chosen expansion parameter, q << 1, all expansions turn out to be of the form prod_{k=1}^infty (1-q^k)^{alpha_k + k beta_k}, where the coefficients alpha_k and beta_k are periodic functions of k. Thanks to this periodicity property we can conjecture the form of the expansions to all orders (except in a few cases where the periodicity is too large). These expressions are then valid for all 0 <= q < 1. We analyse in detail the q to 1^- limit in which the models become critical. In this limit the divergence of the corner free energy defines a universal term which can be compared with the conformal field theory (CFT) predictions of Cardy and Peschel. This allows us to deduce the asymptotic expressions for the correlation length in several cases. Finally we work out the FLM formulae for the case where some of the systems boundaries are endowed with particular (non-free) boundary conditions. We apply this in particular to the square-lattice Potts model with Jacobsen-Saleur boundary conditions, conjecturing the expansions of the surface and corner free energies to arbitrary order for any integer value of the boundary interaction parameter r. These results are in turn compared with CFT predictions.
The basic thermodynamic quantities for a non-interacting scalar field in a periodic potential composed of either a one-dimensional chain of Dirac $delta$-$delta^prime$ functions or a specific potential with extended compact support are calculated. Fi rst, we consider the representation in terms of real frequencies (or one-particle energies). Then we turn the axis of frequency integration towards the imaginary axis by a finite angle, which allows for easy numerical evaluation, and finally turn completely to the imaginary frequencies and derive the corresponding Matsubara representation, which this way appears also for systems with band structure. In the limit case $T to 0$ we confirm earlier results on the vacuum energy. We calculate for the mentioned examples the free energy and the entropy and generalize earlier results on negative entropy.
Using the proposed by us thinning approach to describe extreme matrices, we find an explicit exponentiation formula linking classical extreme laws of Frechet, Gumbel and Weibull given by Fisher-Tippet-Gnedenko classification and free extreme laws of free Frechet, free Gumbel and free Weibull by Ben Arous and Voiculescu [1]. We also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be answered. In particular, we demonstrate explicit calculations for several more or less known random matrix ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing the equivalence of free extreme laws to the Peak-Over-Threshold method in classical probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا