ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the effects of atom losses in the one-dimensional (1D) Bose gas with repulsive contact interactions, a famous quantum integrable system also known as the Lieb-Liniger gas. The generic case of K-body losses (K = 1,2,3,...) is considered. We assume that the loss rate is much smaller than the rate of intrinsic relaxation of the system, so that at any time the state of the system is captured by its rapidity distribution (or, equivalently, by a Generalized Gibbs Ensemble). We give the equation governing the time evolution of the rapidity distribution and we propose a general numerical procedure to solve it. In the asymptotic regimes of vanishing repulsion -- where the gas behaves like an ideal Bose gas -- and hard-core repulsion -- where the gas is mapped to a non-interacting Fermi gas -- we derive analytic formulas. In the latter case, our analytic result shows that losses affect the rapidity distribution in a non-trivial way, the time derivative of the rapidity distribution being both non-linear and non-local in rapidity space.
We provide experimental evidence of universal dynamics far from equilibrium during the relaxation of an isolated one-dimensional Bose gas. Following a rapid cooling quench, the system exhibits universal scaling in time and space, associated with the
Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrabl
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the in
We use the coordinate Bethe ansatz to exactly calculate matrix elements between eigenstates of the Lieb-Liniger model of one-dimensional bosons interacting via a two-body delta-potential. We investigate the static correlation functions of the zero-te
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($din{1,2,3}$). Our impurity based protocol suggests that the fundamental error bound on thermometry at