ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the vacuum field equations in terms of homogeneous solutions to the spin-2, spin-1 and spin-0 Teukolsky equations; and completion pieces that represent perturbations to the mass and angular momentum of the spacetime. The solutions are valid in vacuum Petrov type-D spacetimes that admit a conformal Killing-Yano tensor.
Within the framework of self-force theory, we compute the gravitational-wave energy flux through second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with post-Newtonian calculations in the weak fiel d and they agree remarkably well with numerical-relativity simulations of comparable-mass binaries in the strong field. We also find good agreement for binaries with a spinning secondary or a slowly spinning primary. Our results are key for accurately modelling extreme-mass-ratio inspirals and will be useful in modelling intermediate-mass-ratio systems.
Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential i n many cases such as the quasinormal ringdown following the merger of a binary system, tidally perturbed compact objects, and extreme-mass-ratio inspirals. In this review, motivated primarily by small-mass-ratio binaries but not limited to them, we provide an overview of essential methods in (i) black hole perturbation theory, (ii) orbital mechanics in Kerr spacetime, and (iii) gravitational self-force theory. Our treatment of black hole perturbation theory covers most common methods, including the Teukolsky and Regge-Wheeler-Zerilli equations, methods of metric reconstruction, and Lorenz-gauge formulations, presenting them in a new consistent and self-contained form. Our treatment of orbital mechanics covers quasi-Keplerian and action-angle descriptions of bound geodesics and accelerated orbits, osculating geodesics, near-identity averaging transformations, multiscale expansions, and orbital resonances. Our summary of self-force theorys foundations is brief, covering the main ideas and results of matched asymptotic expansions, local expansion methods, puncture schemes, and point particle descriptions. We conclude by combining the above methods in a multiscale expansion of the perturbative Einstein equations, leading to adiabatic and post-adiabatic evolution schemes. Our presentation is intended primarily as a reference for practitioners but includes a variety of new results. In particular, we present the first complete post-adiabatic waveform-generation framework for generic (nonresonant) orbits in Kerr.
We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy th e Teukolsky equation, and are related to the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul ations of these effects have been beset by obstacles. In this letter we present the first implementation of a complete scheme for second-order self-force computations, specialized to the case of quasicircular orbits about a Schwarzschild black hole. As a demonstration, we calculate the gravitational binding energy of these binaries.
We present an analytic computation of Detweilers redshift invariant for a point mass in a circular orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no assumptions on the magnitude of the spin of the black hol e. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi, and employs a rigorous mode-sum regularization prescription based on the Detweiler-Whiting singular-regular decomposition. The approximations used in our approach are minimal; we use the standard self-force expansion to linear order in the mass ratio, and the standard post-Newtonian expansion in the separation of the binary. A key advantage of this approach is that it produces expressions that include contributions at all orders in the spin of the Kerr black hole. While this work applies the method to the specific case of Detweilers redshift invariant, it can be readily extended to other gauge invariant quantities and to higher post-Newtonian orders.
We present analytic computations of gauge invariant quantities for a point mass in a circular orbit around a Schwarzschild black hole, giving results up to 15.5 post-Newtonian order in this paper and up to 21.5 post-Newtonian order in an online repos itory. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi (MST) and a recent series of results by Bini and Damour. We develop an optimised method for generating post-Newtonian expansions of the MST series, enabling significantly faster computations. We also clarify the structure of the expansions for large values of $ell$, and in doing so develop an efficient new method for generating the MST renormalised angular momentum, $ u$.
The equations of motion of a point particle interacting with its own field are defined in terms of a certain regularized self-field. Two of the leading methods for computing this regularized field are the mode-sum and effective-source approaches. In this work we unite these two distinct regularization schemes by generalizing traditional frequency-domain mode-sum calculations to incorporate effective-source techniques. For a toy scalar-field model we analytically compute an appropriate puncture field from which the regularized residual field can be calculated. To demonstrate the method, we compute the self-force for a scalar particle on a circular orbit in Schwarzschild spacetime. We also demonstrate the relation between the worldtube and window function approaches to localizing the puncture field to the neighborhood of the worldline and show how the method reduces to the well-known mode-sum regularization scheme in a certain limit. This new computational scheme can be applied to cases where traditional mode-sum regularization is inadequate, such as in calculations at second perturbative order.
We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a sta tionary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا