ﻻ يوجد ملخص باللغة العربية
Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the vacuum field equations in terms of homogeneous solutions to the spin-2, spin-1 and spin-0 Teukolsky equations; and completion pieces that represent perturbations to the mass and angular momentum of the spacetime. The solutions are valid in vacuum Petrov type-D spacetimes that admit a conformal Killing-Yano tensor.
We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy th
In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface $Sigma$. Integration over the who
We present an exact solution of Einsteins equation that describes the gravitational shockwave of a massless particle on the horizon of a Kerr-Newman black hole. The backreacted metric is of the generalized Kerr-Schild form and is Type II in the Petro
With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Hor
Loop Quantum Gravity (LQG) is a theory that proposes a way to model the behavior of the spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black holes singularity. The d