ترغب بنشر مسار تعليمي؟ اضغط هنا

Applying the effective-source approach to frequency-domain self-force calculations

115   0   0.0 ( 0 )
 نشر من قبل Niels Warburton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equations of motion of a point particle interacting with its own field are defined in terms of a certain regularized self-field. Two of the leading methods for computing this regularized field are the mode-sum and effective-source approaches. In this work we unite these two distinct regularization schemes by generalizing traditional frequency-domain mode-sum calculations to incorporate effective-source techniques. For a toy scalar-field model we analytically compute an appropriate puncture field from which the regularized residual field can be calculated. To demonstrate the method, we compute the self-force for a scalar particle on a circular orbit in Schwarzschild spacetime. We also demonstrate the relation between the worldtube and window function approaches to localizing the puncture field to the neighborhood of the worldline and show how the method reduces to the well-known mode-sum regularization scheme in a certain limit. This new computational scheme can be applied to cases where traditional mode-sum regularization is inadequate, such as in calculations at second perturbative order.



قيم البحث

اقرأ أيضاً

The calculation of the self force in the modeling of the gravitational-wave emission from extreme-mass-ratio binaries is a challenging task. Here we address the question of the possible emergence of a persistent spurious solution in time-domain schem es, referred to as a {em Jost junk solution} in the literature, that may contaminate self force calculations. Previous studies suggested that Jost solutions are due to the use of zero initial data, which is inconsistent with the singular sources associated with the small object, described as a point mass. However, in this work we show that the specific origin is an inconsistency in the translation of the singular sources into jump conditions. More importantly, we identify the correct implementation of the sources at late times as the sufficient condition guaranteeing the absence of Jost junk solutions.
We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for th is orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the self-force through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in Int. J. Geom. Meth. Mod. Phys., 11, 1450090 (2014).
The computation of the self-force constitutes one of the main challenges for the construction of precise theoretical waveform templates in order to detect and analyze extreme-mass-ratio inspirals with the future space-based gravitational-wave observa tory LISA. Since the number of templates required is quite high, it is important to develop fast algorithms both for the computation of the self-force and the production of waveforms. In this article we show how to tune a recent time-domain technique for the computation of the self-force, what we call the Particle without Particle scheme, in order to make it very precise and at the same time very efficient. We also extend this technique in order to allow for highly eccentric orbits.
Inspirals of stellar-mass objects into massive black holes will be important sources for the space-based gravitational-wave detector LISA. Modelling these systems requires calculating the metric perturbation due to a point particle orbiting a Kerr bl ack hole. Currently, the linear perturbation is obtained with a metric reconstruction procedure that puts it in a no-string radiation gauge which is singular on a surface surrounding the central black hole. Calculating dynamical quantities in this gauge involves a subtle procedure of gauge completion as well as cancellations of very large numbers. The singularities in the gauge also lead to pathological field equations at second perturbative order. In this paper we re-analyze the point-particle problem in Kerr using the corrector-field reconstruction formalism of Green, Hollands, and Zimmerman (GHZ). We clarify the relationship between the GHZ formalism and previous reconstruction methods, showing that it provides a simple formula for the gauge completion. We then use it to develop a new method of computing the metric in a more regular gauge: a Teukolsky puncture scheme. This scheme should ameliorate the problem of large cancellations, and by constructing the linear metric perturbation in a sufficiently regular gauge, it should provide a first step toward second-order self-force calculations in Kerr. Our methods are developed in generality in Kerr, but we illustrate some key ideas and demonstrate our puncture scheme in the simple setting of a static particle in Minkowski spacetime.
Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential i n many cases such as the quasinormal ringdown following the merger of a binary system, tidally perturbed compact objects, and extreme-mass-ratio inspirals. In this review, motivated primarily by small-mass-ratio binaries but not limited to them, we provide an overview of essential methods in (i) black hole perturbation theory, (ii) orbital mechanics in Kerr spacetime, and (iii) gravitational self-force theory. Our treatment of black hole perturbation theory covers most common methods, including the Teukolsky and Regge-Wheeler-Zerilli equations, methods of metric reconstruction, and Lorenz-gauge formulations, presenting them in a new consistent and self-contained form. Our treatment of orbital mechanics covers quasi-Keplerian and action-angle descriptions of bound geodesics and accelerated orbits, osculating geodesics, near-identity averaging transformations, multiscale expansions, and orbital resonances. Our summary of self-force theorys foundations is brief, covering the main ideas and results of matched asymptotic expansions, local expansion methods, puncture schemes, and point particle descriptions. We conclude by combining the above methods in a multiscale expansion of the perturbative Einstein equations, leading to adiabatic and post-adiabatic evolution schemes. Our presentation is intended primarily as a reference for practitioners but includes a variety of new results. In particular, we present the first complete post-adiabatic waveform-generation framework for generic (nonresonant) orbits in Kerr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا