ترغب بنشر مسار تعليمي؟ اضغط هنا

560 - B.R. McNamara 2016
Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low e ntropy gas caught in the updraft of rising X-ray bubbles. The low entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy i.e., t_c/t_I < 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the the free-fall time by a significant factor. This mechanism is motivated by ALMA observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ~ 5x 10^8 yr --- the clear-cut signature of thermal instability and the onset of nebular emission and star formation--- may result from the limited ability of radio bubbles to lift low entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of t_c/t_ff < 10 triggers thermal instability, which we find to be inconsistent with observation.
We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray cavities embedded in the surrounding hot atmospheres, which we use to estimate mean jet power and average accretion rate onto the SMBHs over the past several hundred Myr. We find that ~50% of the sample have detectable nuclear X-ray emission. The nuclear X-ray luminosity is correlated with average accretion rate determined using X-ray cavities, which is consistent with the hypothesis that nuclear X-ray emission traces ongoing accretion. The results imply that jets in systems that have experienced recent AGN outbursts, in the last ~10^7yr, are `on at least half of the time. Nuclear X-ray sources become more luminous with respect to the mechanical jet power as the mean accretion rate rises. We show that nuclear radiation exceeds the jet power when the mean accretion rate rises above a few percent of the Eddington rate, where the AGN apparently transitions to a quasar. The nuclear X-ray emission from three objects (A2052, Hydra A, M84) varies by factors of 2-10 on timescales of 6 months to 10 years. If variability at this level is a common phenomenon, it can account for much of the scatter in the relationship between mean accretion rate and nuclear X-ray luminosity. We find no significant change in the spectral energy distribution as a function of luminosity in the variable objects. The relationship between accretion and nuclear X-ray luminosity is consistent with emission from either a jet, an ADAF, or a combination of the two, although other origins are possible. We also consider the longstanding problem of whether jets are powered by the accretion of cold circumnuclear gas or nearly spherical inflows of hot keV gas.[abridged]
60 - R. Samuele 2011
We present equivalent widths of the [OII] and Ha nebular emission lines for 77 brightest cluster galaxies (BCGs) selected from the 160 Square Degree $ROSAT$ X-ray survey. We find no [OII] or Ha emission stronger than -15 angstroms or -5 angstroms, re spectively, in any BCG. The corresponding emission line luminosities lie below 6E40 erg/s, which is a factor of 30 below that of NGC1275 in the Perseus cluster. A comparison to the detection frequency of nebular emission in BCGs lying at redshifts above z = 0.35 drawn from the Brightest Cluster Survey (Crawford et al. 1999) indicates that we should have detected roughly one dozen emission-line galaxies, assuming the two surveys are selecting similar clusters in the X-ray luminosity range 10E42 erg/s to 10E45 erg/s. The absence of luminous nebular emission (ie., Perseus-like systems) in our sample is consistent with an increase in the number density of {it strong} cooling flow (cooling core) clusters between $rm z=0.5$ and today. The decline in their numbers at higher redshift could be due to cluster mergers and AGN heating.
148 - B.R. McNamara 2009
Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and s tar formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxys unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.
37 - B.R. McNamara 2007
X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dy namical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.
74 - P.E.J. Nulsen 2005
The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active ga lactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.
85 - B.R. McNamara 2001
We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts greater than z=0.46, and we show that they are associated with rich galaxy concentrations. We find that the clusters range between Abell richnes s classes 0-2, and have a most probable richness class of one. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z =0.5. We compare the distribution of distant X-ray clusters in the L_x--richness plane to the distribution of optically-selected clusters from the Palomar Distant Cluster Survey. The optically-selected clusters appear overly rich for their X-ray luminosities when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission. More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.
146 - B.R. McNamara 2000
We present Chandra X-ray Observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the clusters X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightnes s, $sim 25-35$ kpc diameter, that are coincident with Hydra As radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is $sim 600$ Myr in the inner 10 kpc. These properties are consistent with the presence of a $sim 34 msunyr$ cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently-accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material cooling at larger radii remains elusive.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا