ﻻ يوجد ملخص باللغة العربية
The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active galactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.
Utilizing $sim 50$ ks of Chandra X-ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and dee
We investigate the X-ray properties of the powerful radio galaxy Hercules A (3C 348) using ROSAT HRI, PSPC and ASCA observations. The ASCA data are well fit by a thermal plasma model with a temperature of about 4.3 keV and abundances 0.4 solar. The H
We present time-series observations, spectra and archival outburst data of a newly-discovered variable star in Hercules, Var Her 04. Its orbital period, mass ratio, and outburst amplitude resemble those of the UGWZ-type subclass of UGSU dwarf novae.
We present ~103 ks of Chandra observations of the galaxy cluster SPT-CLJ0528-5300 (SPT0528, z=0.768). This cluster harbors the most radio-loud (L_1.4GHz = 1.01 x 10^33 erg/s/Hz) central AGN of any cluster in the South Pole Telescope (SPT) SZ survey w
Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their