ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative efficiency, variability and Bondi accretion onto massive black holes: from mechanical to quasar feedback in brightest cluster galaxies

132   0   0.0 ( 0 )
 نشر من قبل Helen Russell
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray cavities embedded in the surrounding hot atmospheres, which we use to estimate mean jet power and average accretion rate onto the SMBHs over the past several hundred Myr. We find that ~50% of the sample have detectable nuclear X-ray emission. The nuclear X-ray luminosity is correlated with average accretion rate determined using X-ray cavities, which is consistent with the hypothesis that nuclear X-ray emission traces ongoing accretion. The results imply that jets in systems that have experienced recent AGN outbursts, in the last ~10^7yr, are `on at least half of the time. Nuclear X-ray sources become more luminous with respect to the mechanical jet power as the mean accretion rate rises. We show that nuclear radiation exceeds the jet power when the mean accretion rate rises above a few percent of the Eddington rate, where the AGN apparently transitions to a quasar. The nuclear X-ray emission from three objects (A2052, Hydra A, M84) varies by factors of 2-10 on timescales of 6 months to 10 years. If variability at this level is a common phenomenon, it can account for much of the scatter in the relationship between mean accretion rate and nuclear X-ray luminosity. We find no significant change in the spectral energy distribution as a function of luminosity in the variable objects. The relationship between accretion and nuclear X-ray luminosity is consistent with emission from either a jet, an ADAF, or a combination of the two, although other origins are possible. We also consider the longstanding problem of whether jets are powered by the accretion of cold circumnuclear gas or nearly spherical inflows of hot keV gas.[abridged]



قيم البحث

اقرأ أيضاً

In this paper, we present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spe ctral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disk as the emitter of UV photons and a spherical central object as a source of X-ray emission. In the present analysis, the UV emission from the accretion disk is assumed to have an angular dependence, while the X-ray/central object radiation is assumed to be isotropic. This allows us to build streamlines in any angular direction we need to. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition resembles from pure type 1 & 2 to type 5 solutions (see Fig2.1 of Frank etal. 2002), which takes place regardless of whether or not the UV emission dominates over the X-ray emission. We compute the radiative factors at which this transition occurs, and discard type 5 solution from all our models. Estimated values of the accretion radius and accretion rate in terms of the classical Bondi values are also given. The results are useful for the construction of proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBH at the centre of galaxies.
198 - L. Ciotti 2010
We find, from high-resolution hydro simulations, that winds from AGN effectively heat the inner parts (~100 pc) of elliptical galaxies, reducing infall to the central SMBH; and radiative (photoionization and X-ray) heating reduces cooling flows at th e kpc scale. Including both types of feedback with (peak) efficiencies of 3 10^{-4} < epsilon_mech < 10^{-3} and of epsilon_rad ~10^{-1.3} respectively, produces systems having duty-cycles, central SMBH masses, X-ray luminosities, optical light profiles, and E+A spectra in accord with the broad suite of modern observations of massive elliptical systems. Our main conclusion is that mechanical feedback (including all three of energy, momentum and mass) is necessary but the efficiency, based on several independent arguments must be a factor of 10 lower than is commonly assumed. Bursts are frequent at z>1 and decline in frequency towards the present epoch as energy and metal rich gas are expelled from the galaxies into the surrounding medium. For a representative galaxy of final stellar mass ~3 10^{11} Msun, roughly 3 10^{10} Msun of recycled gas has been added to the ISM since z~2 and, of that, roughly 63% has been expelled from the galaxy, 19% has been converted into new metal rich stars in the central few hundred parsecs, and 2% has been added to the central SMBH, with the remaining 16% in the form hot X-ray emitting ISM. The bursts occupy a total time of ~170 Myr, which is roughly 1.4% of the available time. Of this time, the central SMBH would be seen as an UV or optical source for ~45% and ~71$% of the time, respectively. Restricting to the last 8.5 Gyr, the burst occupy ~44 Myr, corresponding to a fiducial duty-cycle of ~5 10^{-3}.
We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. Using smoothed particle hydrodynamics simulation code (GADGET-3) we compare three models with different AGN feedback models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad line quasars which show winds with initial velocities of $v_w ge$ 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity $sim 1000$ km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of $sim$ 20 higher than in the thermal feedback case. All merger remnants with momentum-based AGN feedback with $v_w sim 10,000$ km/s and $epsilon_w=2 times 10^{-3}$, independent of their progenitor mass-ratios, reproduce the observed relations between stellar velocity dispersion and black hole mass ($M_{rm bh} - sigma$) as well as X-ray luminosity ($L_X - sigma$) with $10^{37.5}$ erg/s $lesssim L_X (0.3-8~{rm keV}) lesssim 10^{39.2}$ erg/s for velocity dispersions in the range of 120 km/s $lesssim sigma lesssim$ 190 km/s. In addition, the mechanical feedback produces a much greater AGN variability. We also show that gas is more rapidly and impulsively stripped from the galactic centres driving a moderate increase in galaxy size and decrease in central density with the mechanical AGN feedback model.
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV) > 3*10^44 erg/s) in which AGN-jetted outflows are creating and sustaining clear Xray cavities. Our sample covers the redshift range 0 < z < 0.6 and reveals strong evolution in the nuclear X-ray luminosities, such that the black holes in these systems have become on average at least 10 times fainter over the last 5 Gyrs. Mindful of potential selection effects, we propose two possible scenarios to explain our results: 1) either that the AGNs in BCGs with X-ray cavities are steadily becoming fainter, or more likely, 2) that the fraction of these BCGs with radiatively efficient nuclei is decreasing with time from roughly 60 per cent at z=0.6 to 30 per cent at z=0.1. Based on this strong evolution, we predict that a significant fraction of BCGs in z=1 clusters may host quasars at their centres, potentially complicating the search for such clusters at high redshift. In analogy with black-hole binaries and based on the observed Eddington ratios of our sources, we further propose that the evolving AGN population in BCGs with X-ray cavities may be transiting from a canonical low/hard state, analogous to that of X-ray binaries, to a quiescent state over the last 5 Gyrs.
We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently th e sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا