ﻻ يوجد ملخص باللغة العربية
Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low entropy gas caught in the updraft of rising X-ray bubbles. The low entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy i.e., t_c/t_I < 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the the free-fall time by a significant factor. This mechanism is motivated by ALMA observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ~ 5x 10^8 yr --- the clear-cut signature of thermal instability and the onset of nebular emission and star formation--- may result from the limited ability of radio bubbles to lift low entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of t_c/t_ff < 10 triggers thermal instability, which we find to be inconsistent with observation.
We present an analysis of new and archival ALMA observations of molecular gas in twelve central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in thes
Star formation in the universes most massive galaxies proceeds furiously early in time but then nearly ceases. Plenty of hot gas remains available but does not cool and condense into star-forming clouds. Active galactic nuclei (AGN) release enough en
We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to t
We use the optical--infrared imaging in the UKIDSS Ultra Deep Survey field, in combination with the new deep radio map of Arumugam et al., to calculate the distribution of radio luminosities among galaxies as a function of stellar mass in two redshif
This is the second paper of a series exploring the multi-component (stars, warm and cold gas and radio jets) properties of a sample of eleven nearby low excitation radio galaxies (LERGs), with the aim of better understanding the AGN fuelling/feedback