ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new type of Wave Front Sensor (WFS) derived from the Pyramid WFS (PWFS). This new WFS, called the Flattened Pyramid-WFS (FPWFS), has a reduced Pyramid angle in order to optically overlap the four pupil images into an unique intensity. Th is map is then used to derive the phase information. In this letter this new WFS is compared to three existing WFSs, namely the PWFS, the Modulated PWFS (MPWFS) and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range and low photon flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.
137 - B. Neichel 2015
We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 HII region. As a complementary goal, we aim at demonstrating the gain provided by Wide-Field Adaptive Optics instruments to study young clus ters. We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is an AO instrument, delivering almost diffraction limited images over a field of 2 across. The exquisite angular resolution allows us to reach a limiting magnitude of J = 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select Young Stellar Objects (YSOs) candidates. We detect the presence of 80 Young Stellar Object (YSO) candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. We find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are < 3 Myr. When looking at the spatial distribution of these two populations, we evidence a potential age gradient across the field, suggesting sequential star formation. We construct the IMF, and show that we can sample the mass distribution well into the brown dwarf regime (down to 0.01 Msun). The logarithmic mass function rises to peak at 0.3 Msun, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 +/- 18 Msun, while the ratio of brown dwarfs to star derived is 18 p/- 5 %. When comparing with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348 or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus.
64 - B. Neichel 2008
Several Wide Field of view Adaptive Optics (WFAO) concepts like Multi-Conjugate AO (MCAO), Multi-Object AO (MOAO) or Ground-Layer AO (GLAO) are currently studied for the next generation of Extremely Large Telescopes (ELTs). All these concepts will us e atmospheric tomography to reconstruct the turbulent phase volume. In this paper, we explore different reconstruction algorithms and their fundamental limitations. We conduct this analysis in the Fourier domain. This approach allows us to derive simple analytical formulations for the different configurations, and brings a comprehensive view of WFAO limitations. We then investigate model and statistical errors and their impact on the phase reconstruction. Finally, we show some examples of different WFAO systems and their expected performance on a 42m telescope case.
167 - B. Neichel , M. Puech (2 2008
We present a first combined analysis of the morphological and dynamical properties for the Intermediate MAss Galaxy Evolution Sequence (IMAGES) sample. It is a representative sample of 52 z~0.6 galaxies with Mstell from 1.5 to 15 10^10Msun and posses sing 3D resolved kinematics and HST deep imaging in at least two broad band filters. We aim at evaluate robustly the evolution of rotating spirals since z~0.6, as well as to test the different schemes for classifying galaxies morphologically. We used all the information provided by multi-band images, color maps and 2 dimensional light fitting to assign to each object a morphological class. We divided our sample between spiral disks, peculiar objects, compact objects and mergers. Using our morphological classification scheme, 4/5 of identified spirals are rotating disks and more than 4/5 of identified peculiar galaxies show complex kinematics, while automatic classification methods such as Concentration-Asymmetry and GINI-M20 severely overestimate the fraction of relaxed disk galaxies. Using this methodology, we find that the fraction of rotating spirals has increased by a factor ~ 2 during the last 6 Gyrs, a much higher fraction that found previously based on morphologies alone. These rotating spiral disks are forming stars very rapidly, doubling their stellar masses over the last 6 Gyrs, while most of their stars have been formed few Gyrs earlier, which reveals the presence of a large gas supply. Because they are likely the progenitors of local spirals, we can conjecture how their properties are evolving. Their disks show some evidence for an inside-out growth and the gas supply/accretion is not made randomly as the disk need to be stable in order to match the local disk properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا