ﻻ يوجد ملخص باللغة العربية
We propose a new type of Wave Front Sensor (WFS) derived from the Pyramid WFS (PWFS). This new WFS, called the Flattened Pyramid-WFS (FPWFS), has a reduced Pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this letter this new WFS is compared to three existing WFSs, namely the PWFS, the Modulated PWFS (MPWFS) and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range and low photon flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.
The Zernike wavefront sensor (ZWFS) is a concept belonging to the wide class Fourier-filtering wavefront sensor (FFWFS). The ZWFS is known for its extremely high sensitivity while having a low dynamic range, which makes it a unique sensor for second
Extremely Large Telescopes have overwhelmingly opted for the Pyramid wavefront sensor (PyWFS) over the more widely used Shack-Hartmann WaveFront Sensor (SHWFS) to perform their Single Conjugate Adaptive Optics (SCAO) mode. The PyWFS, a sensor based o
Wavefront sensing and control are important for enabling one of the key advantages of using large apertures, namely higher angular resolutions. Pyramid wavefront sensors are becoming commonplace in new instrument designs owing to their superior sensi
We present a consistent multimode theory that describes the coupling of single photons generated by collinear Type-I parametric down-conversion into single-mode optical fibers. We have calculated an analytic expression for the fiber diameter which ma
With its high sensitivity, the Pyramid wavefront sensor (PyWFS) is becoming an advantageous sensor for astronomical adaptive optics (AO) systems. However, this sensor exhibits significant non-linear behaviours leading to challenging AO control issues