ترغب بنشر مسار تعليمي؟ اضغط هنا

IMAGES II. A surprisingly low fraction of undisturbed rotating spiral disks at z~0.6: The morpho-kinematical relation 6 Gyrs ago

166   0   0.0 ( 0 )
 نشر من قبل Benoit Neichel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a first combined analysis of the morphological and dynamical properties for the Intermediate MAss Galaxy Evolution Sequence (IMAGES) sample. It is a representative sample of 52 z~0.6 galaxies with Mstell from 1.5 to 15 10^10Msun and possessing 3D resolved kinematics and HST deep imaging in at least two broad band filters. We aim at evaluate robustly the evolution of rotating spirals since z~0.6, as well as to test the different schemes for classifying galaxies morphologically. We used all the information provided by multi-band images, color maps and 2 dimensional light fitting to assign to each object a morphological class. We divided our sample between spiral disks, peculiar objects, compact objects and mergers. Using our morphological classification scheme, 4/5 of identified spirals are rotating disks and more than 4/5 of identified peculiar galaxies show complex kinematics, while automatic classification methods such as Concentration-Asymmetry and GINI-M20 severely overestimate the fraction of relaxed disk galaxies. Using this methodology, we find that the fraction of rotating spirals has increased by a factor ~ 2 during the last 6 Gyrs, a much higher fraction that found previously based on morphologies alone. These rotating spiral disks are forming stars very rapidly, doubling their stellar masses over the last 6 Gyrs, while most of their stars have been formed few Gyrs earlier, which reveals the presence of a large gas supply. Because they are likely the progenitors of local spirals, we can conjecture how their properties are evolving. Their disks show some evidence for an inside-out growth and the gas supply/accretion is not made randomly as the disk need to be stable in order to match the local disk properties.

قيم البحث

اقرأ أيضاً

76 - M. Puech 2009
[abr.] Using the multi-integral-field spectrograph GIRAFFE at VLT, we previsouly derived the stellar-mass Tully-Fisher Relation (smTFR) at z~0.6, and found that the distant relation is systematically offset by roughly a factor of two toward lower mas ses. We extend the study of the evolution of the TFR by establishing the first distant baryonic TFR. To derive gas masses in distant galaxies, we estimate a gas radius and invert the Schmidt-Kennicutt law between star formation rate and gas surface densities. We find that gas extends farther out than the UV light from young stars, a median of ~30%. We present the first baryonic TFR (bTFR) ever established at intermediate redshift and show that, within an uncertainty of +/-0.08 dex, the zeropoint of the bTFR does not appear to evolve between z~0.6 and z=0. The absence of evolution in the bTFR over the past 6 Gyr implies that no external gas accretion is required for distant rotating disks to sustain star formation until z=0 and convert most of their gas into stars. Finally, we confirm that the larger scatter found in the distant smTFR, and hence in the bTFR, is caused entirely by major mergers. This scatter results from a transfer of energy from bulk motions in the progenitors, to random motions in the remnants, generated by shocks during the merging. Shocks occurring during these events naturally explain the large extent of ionized gas found out to the UV radius in z~0.6 galaxies. All the results presented in this paper support the ``spiral rebuilding scenario of Hammer and collaborators, i.e., that a large fraction of local spiral disks have been reprocessed during major mergers in the past 8 Gyr.
49 - F. Hammer 2009
The IMAGES project aims at measuring the velocity fields of a representative sample of 100 massive galaxies at z=0.4-0.75, selected in the CDFS, the CFRS and the HDFS fields. It uses the world-unique mode of multiple integral field units of FLAMES/ G IRAFFE at VLT. The resolved-kinematics data allow us to sample the large scale motions at ~ few kpc scale for each galaxy. They have been combined with the deepest HST/ACS, Spitzer (MIPS and IRAC) and VLT/FORS2 ever achieved observations. Most intermediate redshift galaxies show anomalous velocity fields: 6 Gyrs ago, half of the present day spirals were out of equilibrium and had peculiar morphologies. The wealth of the data in these fields allow us to modelize the physical processes in each galaxy with an accuracy almost similar to what is done in the local Universe. These detailed analyses reveal the importance of merger processes, including their remnant phases. Together with the large evolution of spiral properties, this points out the importance of disk survival and strengthens the disk rebuilding scenario. This suggests that the hierarchical scenario may apply to the elaboration of disk galaxies as it does for ellipticals.
The escape fraction of ionizing photons from galaxies is a crucial quantity controlling the cosmic ionizing background radiation and the reionization. Various estimates of this parameter can be obtained in the redshift range, z=0--6, either from dire ct observations or from the observed ionizing background intensities. We compare them homogeneously in terms of the observed flux density ratio of ionizing ($sim900$ AA rest-frame) to non-ionizing ultraviolet ($sim1500$ AA rest-frame) corrected for the intergalactic absorption. The escape fraction is found to increase by an order of magnitude, from a value less than 0.01 at $zla1$ to about 0.1 at $zga4$.
Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morpho-kinematical studies, using {sc shape}, of the evolution of the Halpha line pro file following the outburst of the nova KT Eridani. We applied a series of geometries in order to determine the morphology of the system. The best fit morphology was that of a dumbbell structure with a ratio between the major to minor axis of 4:1, with an inclination angle of 58$^{+6}_{-7}$ degrees and a maximum expansion velocity of 2800$pm$200 km/s. Although, we found that it is possible to define the overall structure of the system, the radial density profile of the ejecta is much more difficult to disentangle. Furthermore, morphology implied here may also be consistent with the presence of an evolved secondary as suggested by various authors.
At intermediate redshifts, many galaxies seem to be perturbed or suffering from an interaction. Considering that disk galaxies may have formed and evolved through minor mergers or through major mergers, it is important to understand the mechanisms at play during each type of merger in order to be able to establish the outcome of such an event. In some cases, only the use of both morphological and kinematical information can disentangle the actual configuration of an encounter at intermediate redshift. In this work, we present the morphological and kinematical analysis of a system at z=0.74 in order to understand its configuration, interacting stage and evolution. Using the integral field spectrograph GIRAFFE, long-slit spectroscopy by FORS2 and direct optical images from the HST-ACS and ISAAC near-infrared images, we disentangle the morphology of this system, its star-formation history and its extended kinematics in order to propose a possible configuration for the system. Numerical simulations are used to test different interacting scenarii. We identify this system as a face-on disk galaxy with a very bright bar in interaction with a smaller companion with a mass ratio of 3:1. The relevance of kinematical information and the constraints it imposes on the interpretation of the observations of distant galaxies is particularly strengthened in this case. This object is amongst the best example on how one may misinterpret morphology in the absence of kinematical information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا