ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep near-infrared adaptive optics observations of a young embedded cluster at the edge of the RCW 41 HII region

137   0   0.0 ( 0 )
 نشر من قبل Benoit Neichel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Neichel




اسأل ChatGPT حول البحث

We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 HII region. As a complementary goal, we aim at demonstrating the gain provided by Wide-Field Adaptive Optics instruments to study young clusters. We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is an AO instrument, delivering almost diffraction limited images over a field of 2 across. The exquisite angular resolution allows us to reach a limiting magnitude of J = 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select Young Stellar Objects (YSOs) candidates. We detect the presence of 80 Young Stellar Object (YSO) candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. We find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are < 3 Myr. When looking at the spatial distribution of these two populations, we evidence a potential age gradient across the field, suggesting sequential star formation. We construct the IMF, and show that we can sample the mass distribution well into the brown dwarf regime (down to 0.01 Msun). The logarithmic mass function rises to peak at 0.3 Msun, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 +/- 18 Msun, while the ratio of brown dwarfs to star derived is 18 p/- 5 %. When comparing with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348 or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus.

قيم البحث

اقرأ أيضاً

100 - T. L. Beck 2002
We present the results of a high resolution near infrared adaptive optics survey of the young obscured star forming region NGC 2024. Out of the total 73 stars detected in the adaptive optics survey of the cluster, we find 3 binaries and one triple. T he resulting companion star fraction, 7+/-3% in the separation range of 0.35-2.3 (145-950 AU), is consistent with that expected from the multiplicity of mature solar-type stars in the local neighborhood. Our survey was sensitive to faint secondaries but no companions with Delta K > 1.2 magnitudes are detected within 2 of any star. The cluster has a K luminosity function that peaks at ~12, and although our completeness limit was 17.7 magnitude at K, the faintest star we detect had a K magnitude of 16.62.
Triggered star formation around HII regions could be an important process. The Galactic HII region RCW 79 is a prototypical object for triggered high-mass star formation. We take advantage of Herschel data from the surveys HOBYS, Evolution of Interst ellar Dust, and Hi-Gal to extract compact sources in this region, complemented with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. We obtained a sample of 50 compact sources, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 $M_odot$, densities of 0.1-44 $times$ $10^5$ cm$^{-3}$, and luminosities of 19-12712 $L_odot$. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 $M_odot$, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions.
We describe the results of two near infrared (K-band) imaging surveys and a three color (JHK) survey of the vicinity of NGC 7538. The limiting magnitudes are K ~ 16.5 and K ~ 17.5 mag for the K-band surveys and K ~ 15 mag for the JHK survey. We ident ify more than 2000 and 9000 near-infrared (NIR) sources on the images of the two K-band surveys and 786 NIR sources in the JHK survey. From color-color diagrams, we derive a reddening law for background stars and identify 238 stars with NIR excesses. Contour maps indicate a high density peak coincident with a concentration of stars with NIR excesses. We identify this peak as a young, embedded cluster and confirm this result with the K-band luminosity function, color histograms, and color-magnitude diagrams. The center of the cluster is at RA = 23:13:39.34, DEC = 61:29:18.9. The cluster radius is $sim$ 3 ~ 2.5 pc for an adopted distance, d ~ 2.8 kpc. For d = 2.8 kpc, and reddening, E_{J-K} = 0.55 mag, the slope of the logarithmic K-band luminosity function (KLF) of the cluster, s ~ 0.32 +- 0.03, agrees well with previous results for L1630 (s = 0.34) and M17 (s = 0.26).
W49A is one of the most luminous giant H II (GH II) regions in our Galaxy. This star forming complex contains numerous compact and ultra-compact (UC) H II regions, extending over an area of 15 pc. It emits about 10^{51} Lyman continuum photons per se cond, equivalent to the presence of about 100 O stars, but it is completely obscured in optical wavelengths by intervening interstellar dust. The center holds a ``cluster of about 30 O stars, each within an individual UCHII region emitting free-free emission at cm wavelengths. Our deep K-band (2.2 um) image toward the W49A cluster reveals just two of the individual exciting stars, each associated with a point--like radio source, but the rest are invisible. These O stars are so recently born as to not yet have emerged from their natal dust cocoons, in contrast to other Galactic clusters embedded in GH II regions in which many of the individual massive stars are already revealed. Plausibility arguments are made which suggest that a stellar disc might be common during the entire UCH II phase of massive star birth, as it persists after accretion ceases in some stars. Nebular emission (e.g., from Br gamma) is visible around the periphery of the central region of W49A, along with candidate exciting stars. Star formation there may have preceeded that in the center, or its lower density environment may have speeded up the dispersal of the natal dust cocoons. The W49A cluster can serve as a template for the more luminous buried star clusters now being found in normal galaxies and starbursts.
The H II region RCW120 is a well-known object, which is often considered as a target to verify theoretical models of gas and dust dynamics in the interstellar medium. However, the exact geometry of RCW120 is still a matter of debate. In this work, we analyse observational data on molecular emission in RCW120 and show that 13CO(2-1) and C18O(2-1) lines are fitted by a 2D model representing a ring-like face-on structure. The changing of the C18O(3-2) line profile from double-peaked to single-peaked from the dense molecular Condensation 1 might be a signature of stalled expansion in this direction. In order to explain a self-absorption dip of the 13CO(2-1) and 13CO(3-2) lines, we suggest that RCW120 is surrounded by a diffuse molecular cloud, and find confirmation of this cloud on a map of interstellar extinction. Optically thick 13CO(2-1) emission and the infrared 8 um PAH band form a neutral envelope of the H II region resembling a ring, while the envelope breaks into separate clumps on images made with optically thin C18O(2-1) line and far-infrared dust emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا