ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - X. Yang , S.-B. Zhang , J.-S. Wang 2021
We have searched for weak fast radio burst (FRB) events using a database containing 568,736,756 transient events detected using the Parkes radio telescope between 1997 and 2001. In order to classify these pulses, and to identify likely FRB candidates , we used a machine learning algorithm based on ResNet. We identified 81 new candidate FRBs and provide details of their positions, event times, and dispersion measures. These events were detected in only one beam of the Parkes multibeam receiver. We used a relatively low S/N cutoff threshold when selecting these bursts and some have dispersion measures only slightly exceeding the expected Galactic contribution. We therefore present these candidate FRBs as a guide for follow-up observations in the search for repeating FRBs.
Gamma-ray bursts (GRBs) have been phenomenologically classified into long and short populations based on the observed bimodal distribution of duration. Multi-wavelength and multi-messenger observations in recent years have revealed that in general lo ng GRBs originate from massive star core collapse events, whereas short GRBs originate from binary neutron star mergers. It has been known that the duration criterion is sometimes unreliable, and multi-wavelength criteria are needed to identify the physical origin of a particular GRB. Some apparently long GRBs have been suggested to have a neutron star merger origin, whereas some apparently short GRBs have been attributed to genuinely long GRBs whose short, bright emission is slightly above the detectors sensitivity threshold. Here we report the comprehensive analysis of the multi-wavelength data of a bright short GRB 200826A. Characterized by a sharp pulse, this burst shows a duration of 1 second and no evidence of an underlying longer-duration event. Its other observational properties such as its spectral behaviors, total energy, and host galaxy offset, are, however, inconsistent with those of other short GRBs believed to originate from binary neutron star mergers. Rather, these properties resemble those of long GRBs. This burst confirms the existence of short duration GRBs with stellar core-collapse origin, and presents some challenges to the existing models.
The current event rate estimates of long gamma-ray bursts based on distinct methods or samples especially at lower redshift are largely debated, which motivates us to re-study the dependence of luminosity function and event rates for different burst samples on the criteria of sample selection and threshold effect in this letter. To ensure the sample completeness as possible, we have chosen two samples including 88 and 118 long bright bursts with known redshift and peak flux over 2.6 ph cm$^{-2}$ s$^{-1}$. It is found that the evolution of luminosity with redshift can be expressed by $Lpropto(1+z)^k$ with a diverse $k$ relied more on the sample selection. Interestingly, the cumulative distributions of either non-evolving luminosities or redshifts are found to be also determined by the sample selection rather the instrumental sensitivity. Nevertheless, the non-evolving luminosities of our samples are similarly distributed with a comparable break luminosity of $L_0sim10^{51}$ erg s$^{-1}$. Importantly, we verify with a K-S test that three cases of event rates for the two burst samples evolve with redshift similarly except a small discrepancy due to sampling differences at low-redshift of $z<1$, in which all event rates show an excess of gaussian profile instead of monotonous decline. Most importantly, it is found that the low-redshift burst event rates violate the star formation rates, while both of them are good in agreement with each other in the higher-redshift regions as many authors discovered previously. Consequently, we predict that two types of long gamma-ray bursts should be expected on the basis of whether they match the star formation or not.
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterg low light curves as observed $(F_{ u} propto T^{0.8})$. Here we reconsider the model of stratified ejecta with energy profile of $E(>Gamma beta)=E_0(Gamma beta)^{-k}$ as the origin of the afterglow light curves of the burst, where $Gamma$ and $beta$ are the Lorentz factor and speed of the ejecta, respectively. $k$ is the power-law slope of the energy profile. We consider the ejecta are collimated into jets. Two kinds of jet evolutions are investigated, including a lateral-spreading jet and a non-lateral-spreading jet. We fit the multi-band afterglow light curves, including the X-ray data at one thousand days post-burst, and find that both the models of the spreading and non-spreading jets can fit the light curves well, but the observed angular size of the source and the apparent velocity of the flux centroid for the spreading jet model are beyond the observation limits, while the non-spreading jet model meets the observation limits. Some of the best-fit parameters for the non-spreading jet model, such as the number density of the circumburst medium $sim10^{-2}$ cm$^{-3}$ and the total jet kinetic energy $E sim 4.8times 10^{51}$ erg, also appear plausible. The best-fit slope of the jet energy profile is $k sim 7.1$. Our results suggest that the afterglow of GRB 170817A may arise from the stratified jet and that the lateral spreading of the jet is not significant.
Realization of electromagnetic energy confinement beyond the diffraction limit is of paramount importance for novel applications like nano-imaging, information processing, and energy harvest. Current approaches based on surface plasmon polaritons and photonic crystals are either intrinsically lossy or with low coupling efficiency. Herein, we successfully address these challenges by constructing an array of nonradiative anapoles that originate from the destructive far-field interference of electric and toroidal dipole modes. The proposed metachain can achieve ultracompact (1/13 of incident wavelength) and high-efficiency electromagnetic energy transfer without the coupler. We experimentally investigate the proposed metachain at mid-infrared and give the first near-field experimental evidence of anapole-based energy transfer, in which the spatial profile of anapole mode is also unambiguously identified at nanoscale. We further demonstrate the metachain is intrinsically lossless and scalable at infrared wavelengths, realizing a 90$^circ$ bending loss down to 0.32 dB at the optical communication wavelength. The present scheme bridges the gap between the energy confinement and transfer of anapoles, and opens a new gate for more compactly integrated photonic and energy devices, which can operate in a broad spectral range.
A comprehensive study is given to short gamma-ray bursts (sGRBs) in the third Swift/BAT GRB Catalog from December 2004 to July 2019. We examine in details the temporal properties of the three components in the prompt gamma-ray emission phase, includi ng precursors, main peaks and extended emissions (EE). We investigate the similarity of the main peaks between one-component and two-component sGRBs. It is found that there is no substantial difference among their main peaks. Importantly, comparisons are made between in the single-peaked sGRBs and the double-peaked sGRBs. It is found that our results of main peaks in Swift/BAT sGRBs are essentially consistent with those in CGRO/BATSE ones recently found in our paper I. Interestingly, we suspect, besides the newly-found MODE I/II evolution forms of pulses in BATSE sGRBs in paper I, that there would have more evolution modes of pulses across differently adjacent energy channels in view of the Swift/BAT observations. We further inspect the correlation of the main peaks with either the precursors or the EEs. We find that the main peaks tend to last longer than the precursors but shorter than the EEs. In particular, we verify the power-law correlations related with peak fluxes of the three components, strongly suggesting that they are produced from the similar central engine activities. Especially, we compare the temporal properties of GRB 170817A with other sGRBs with EE and find no obvious differences between them.
76 - Z. B. Zhang , M. Jiang , Y. Zhang 2020
Owing to narrow energy band of textit{Swift}/BAT, several urgent issues are required to pay more attentions but unsolved so far. We systematically study the properties of a refined sample of 283 textit{Swift}/BAT gamma-ray bursts with well-measured s pectral peak energy ($E_{text p}$) at a high confidence level larger than 3$sigma$. It is interestingly found that duration ($T_{90}$) distribution of textit{Swift} bursts still exhibits an evident bimodality with a more reliable boundary of $T_{90}simeq$1.06 s instead of 2 s for previously contaminated samples including bursts without well-peaked spectra, which is very close to $sim$1.27 s and $sim$0.8 s suggested by some authors for Fermi/GBM and textit{Swift}/BAT catalogs, respectively. The textit{Swift}/BAT short and long bursts have comparable mean $E_{text p}$ values of $87^{+112}_{-49}$ and $85^{+101}_{-46}$ keV in each, similar to what found for both types of BATSE bursts, which manifests the traditional short-hard/long-soft scheme may not be tenable for the certain energy window of a detector. In statistics, we also investigate the consistency of distinct methods for the $E_{text p}$ estimates and find that Bayesian approach and BAND function can always give consistent evaluations. In contrast, the frequently-used cut-off power-law model matches two other methods for lower $E_{text p}$ and will overestimate the $E_{text p}$ more than 70% as $E_{text p}>$100 keV. Peak energies of X-ray flashes, X-ray rich bursts and classical gamma-ray bursts could have an evolutionary consequence from thermal-dominated to non-thermal-dominated radiation mechanisms. Finally, we find that the $E_{text p}$ and the observed fluence ($S_{gamma}$) in the observer frame are correlated as $E_psimeq [S_{gamma}/(10^{-5} erg cm^{-2})]^{0.28}times 117.5^{+44.7}_{-32.4}$ keV proposed to be an useful indicator of GRB peak energies.
336 - S. Guan , G. B. Zhang , C. Liu 2020
Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermio ns in dynamically stable quadruple-layer (QL) XSbO$_2$ (X= Li, Na). Depending on the different polarization configurations, QL-XSbO$_2$ can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC/m and 0.39 nC/m for QL-LiSbO$_2$ and QL-NaSbO$_2$, respectively. Interestingly, the QL-LiSbO$_2$ possesses two other metastable ferroelectric (FE) phases, demonstrating the first 2D example with multiple FE orders. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermions in the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO$_2$ as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.
Recent observations with the Chandra X-ray telescope continue to detect X-ray emission from the transient GW170817. In a total exposure of 96.6 ks, performed between March 9 and March 16 2020 (935 d to 942 d after the merger), a total of 8 photons ar e measured at the source position, corresponding to a significance of about 5 sigma. Radio monitoring with the Australian Telescope Compact Array (ATCA) shows instead that the source has faded below our detection threshold (<33 uJy, 3 sigma). By assuming a constant spectral index beta=0.585, we derive an unabsorbed X-ray flux of approximately 1.4E-15 erg/cm^2/s, higher than earlier predictions, yet still consistent with a simple structured jet model. We discuss possible scenarios that could account for prolonged emission in X-rays. The current dataset appears consistent both with energy injection by a long-lived central engine and with the onset of a kilonova afterglow, arising from the interaction of the sub-relativistic merger ejecta with the surrounding medium. Long-term monitoring of this source will be essential to test these different models.
We prove that the enumerative polynomials of generalized Stirling permutations by the statistics of plateaux, descents and ascents are partial $gamma$-positive. Specialization of our result to the Jacobi-Stirling permutations confirms a recent partia l $gamma$-positivity conjecture due to Ma, Yeh and the second named author. Our partial $gamma$-positivity expansion, as well as a combinatorial interpretation for the corresponding $gamma$-coefficients, are obtained via the machine of context-free grammars and a group action on generalized Stirling permutations. Besides, we also provide an alternative approach to the partial $gamma$-positivity from the stability of certain multivariate polynomials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا