ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comprehensive Study of Luminosity Functions and Event Rate Densities of Long Gamma-Ray Bursts with Non-Parametric Method

64   0   0.0 ( 0 )
 نشر من قبل Xiao-Fei Dong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The current event rate estimates of long gamma-ray bursts based on distinct methods or samples especially at lower redshift are largely debated, which motivates us to re-study the dependence of luminosity function and event rates for different burst samples on the criteria of sample selection and threshold effect in this letter. To ensure the sample completeness as possible, we have chosen two samples including 88 and 118 long bright bursts with known redshift and peak flux over 2.6 ph cm$^{-2}$ s$^{-1}$. It is found that the evolution of luminosity with redshift can be expressed by $Lpropto(1+z)^k$ with a diverse $k$ relied more on the sample selection. Interestingly, the cumulative distributions of either non-evolving luminosities or redshifts are found to be also determined by the sample selection rather the instrumental sensitivity. Nevertheless, the non-evolving luminosities of our samples are similarly distributed with a comparable break luminosity of $L_0sim10^{51}$ erg s$^{-1}$. Importantly, we verify with a K-S test that three cases of event rates for the two burst samples evolve with redshift similarly except a small discrepancy due to sampling differences at low-redshift of $z<1$, in which all event rates show an excess of gaussian profile instead of monotonous decline. Most importantly, it is found that the low-redshift burst event rates violate the star formation rates, while both of them are good in agreement with each other in the higher-redshift regions as many authors discovered previously. Consequently, we predict that two types of long gamma-ray bursts should be expected on the basis of whether they match the star formation or not.



قيم البحث

اقرأ أيضاً

We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t= 10^2 s, t = 10^3 s, and 1 hour) for the optical lig htcurves of a sample of 93 GRBs (the global sample), and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t_{p} and break time t_{b}, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 10^3 seconds, t_{p}, and t_{b}, respectively. Our results show that a single power-law luminosity function is adequate to model the data, with indices -1.40+/-0.10, -1.06+/- 0.16, and -1.54+/- 0.22, respectively. Based on the derived rest-frame 10^3 s luminosity function, we generate the intrinsic distribution of the R-band apparent magnitude M_{R} at the observed time 10^{3} seconds post trigger, which peaks at M_{R}=22.5 mag. The fraction of GRBs whose R-band magnitude is fainter than 22 mag, and 25 mag and at the observer time 10^3 seconds are ~63% and ~25%, respectively. The detection probabilities of the optical afterglows with ground-based robotic telescopes and UVOT onboard {Swift} are roughly consistent with that inferred from this intrinsic M_{R} distribution, indicating that the variations of the dark GRB fraction among the samples with different telescopes may be due to the observational selection effect, although the existence of an intrinsically dark GRB population cannot be ruled out.
The Zwicky Transient Facility recently announced the detection of an optical transient AT2020blt at redshift $z=2.9$, consistent with the afterglow of a gamma-ray burst. No prompt emission was observed. We analyse AT2020blt with detailed models, show ing the data are best explained as the afterglow of an on-axis long gamma-ray burst, ruling out other hypotheses such as a cocoon and a low-Lorentz factor jet. We search textit{Fermi} data for prompt emission, setting deeper upper limits on the prompt emission than in the original detection paper. Together with konus{} observations, we show that the gamma-ray efficiency of AT2020blt is $lesssim 2.8%$, lower than $98.4%$ of observed gamma-ray bursts. We speculate that AT2020blt and AT2021any belong to the low-efficiency tail of long gamma-ray burst distributions that are beginning to be readily observed due to the capabilities of new observatories like the Zwicky Transient Facility.
We study the luminosity function (LF), the comoving rate and the detection rate of Long Gamma-Ray Burst (LGRBs) to high redshift, using galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation. We assume the collapsar model and different metallicity thresholds, and conclude that LGRBs are not good tracers of the star formation history in the universe. Then using the log N-log P diagram for BATSE bursts, we determine the LF (with and without evolution with redshift) and the formation rate of LGRBs, obtaining constraints on the slope of the power-law. We check the resulting redshift distribution with SWIFT data updated to 2009 August, finding that models where LGRBs have as progenitors stars with Z<0.3Z_sun and without evolution of the LF are in agreement with the data. We also predict that there are about ~1% of GRBs at redshift z>6.
We compute the luminosity function (LF) and the formation rate of long gamma ray bursts (GRBs) in three different scenarios: i) GRBs follow the cosmic star formation and their LF is constant in time; ii) GRBs follow the cosmic star formation but the LF varies with redshift; iii) GRBs form preferentially in low-metallicity environments. We then test model predictions against the Swift 3-year data, showing that scenario i) is robustly ruled out. Moreover, we show that the number of bright GRBs detected by Swift suggests that GRBs should have experienced some sort of luminosity evolution with redshift, being more luminous in the past. Finally we propose to use the observations of the afterglow spectrum of GRBs at z>5.5 to constrain the reionization history and we applied our method to the case of GRB 050904.
We investigated the rest frame spectral lags of two complete samples of bright long (50) and short (6) gamma-ray bursts (GRB) detected by Swift. We analysed the Swift/BAT data through a discrete cross-correlation function (CCF) fitted with an asymmet ric Gaussian function to estimate the lag and the associated uncertainty. We find that half of the long GRBs have a positive lag and half a lag consistent with zero. All short GRBs have lags consistent with zero. The distributions of the spectral lags for short and long GRBs have different average values. Limited by the small number of short GRBs, we cannot exclude at more than 2 sigma significance level that the two distributions of lags are drawn from the same parent population. If we consider the entire sample of long GRBs, we do not find evidence for a lag-luminosity correlation, rather the lag-luminosity plane appears filled on the left hand side, thus suggesting that the lag-luminosity correlation could be a boundary. Short GRBs are consistent with the long ones in the lag-luminosity plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا