ترغب بنشر مسار تعليمي؟ اضغط هنا

A thousand days after the merger: continued X-ray emission from GW170817

79   0   0.0 ( 0 )
 نشر من قبل Eleonora Troja
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations with the Chandra X-ray telescope continue to detect X-ray emission from the transient GW170817. In a total exposure of 96.6 ks, performed between March 9 and March 16 2020 (935 d to 942 d after the merger), a total of 8 photons are measured at the source position, corresponding to a significance of about 5 sigma. Radio monitoring with the Australian Telescope Compact Array (ATCA) shows instead that the source has faded below our detection threshold (<33 uJy, 3 sigma). By assuming a constant spectral index beta=0.585, we derive an unabsorbed X-ray flux of approximately 1.4E-15 erg/cm^2/s, higher than earlier predictions, yet still consistent with a simple structured jet model. We discuss possible scenarios that could account for prolonged emission in X-rays. The current dataset appears consistent both with energy injection by a long-lived central engine and with the onset of a kilonova afterglow, arising from the interaction of the sub-relativistic merger ejecta with the surrounding medium. Long-term monitoring of this source will be essential to test these different models.

قيم البحث

اقرأ أيضاً

We report deep Chandra, HST and VLA observations of the binary neutron star event GW170817 at $t<160$ d after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency $ u_c$ is above the X-ray band and the synchrotron frequency $ u_m$ is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index $p$ of the distribution of non-thermal relativistic electrons $N(gamma)propto gamma^{-p}$ accelerated by a shock launched by a NS-NS merger to date. We find $p=2.17pm0.01$, which indicates that radiation from ejecta with $Gammasim3-10$ dominates the observed emission. While constraining the nature of the emission process, these observations do emph{not} constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, emph{and} emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal SGRB directed away from our line of sight. Observations at $tle 200$ days are unlikely to settle the debate as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.
We present new radio observations of the binary neutron star merger GW170817 carried out with the Karl G. Jansky Very large Array (VLA) more than 3,yrs after the merger. Our combined dataset is derived by co-adding more than $approx32$,hours of VLA t ime on-source, and as such provides the deepest combined observation (rms sensitivity $approx 0.99,mu$Jy) of the GW170817 field obtained to date at 3,GHz. We find no evidence for a late-time radio re-brightening at a mean epoch of $tapprox 1200$,d since merger, in contrast to a $approx 2.1,sigma$ excess observed at X-ray wavelengths at the same mean epoch. Our measurements agree with expectations from the post-peak decay of the radio afterglow of the GW170817 structured jet. Using these results, we constrain the parameter space of models that predict a late-time radio re-brightening possibly arising from the high-velocity tail of the GW170817 kilonova ejecta, which would dominate the radio and X-ray emission years after the merger (once the structured jet afterglow fades below detection level). Our results point to a steep energy-speed distribution of the kilonova ejecta (with energy-velocity power law index $alpha gtrsim 5$). We suggest possible implications of our radio analysis, when combined with the recent tentative evidence for a late-time re-brightening in the X-rays, and highlight the need for continued radio-to-X-ray monitoring to test different scenarios.
141 - L. Piro , E. Troja , B. Zhang 2018
Multi-messenger observations of GW170817 have not conclusively established whether the merger remnant is a black hole (BH) or a neutron star (NS). We show that a long-lived magnetized NS with a poloidal field $Bapprox 10^{12}$G is fully consistent wi th the electromagnetic dataset, when spin down losses are dominated by gravitational wave (GW) emission. The required ellipticity $epsilongtrsim 10^{-5}$ can result from a toroidal magnetic field component much stronger than the poloidal component, a configuration expected from a NS newly formed from a merger. Abrupt magnetic dissipation of the toroidal component can lead to the appearance of X-ray flares, analogous to the one observed in gamma-ray burst (GRB) afterglows. In the X-ray afterglow of GW170817 we identify a low-significance ($gtrsim 3sigma$) temporal feature at 155 d, consistent with a sudden reactivation of the central NS. Energy injection from the NS spin down into the relativistic shock is negligible, and the underlying continuum is fully accounted for by a structured jet seen off-axis. Whereas radio and optical observations probe the interaction of this jet with the surrounding medium, observations at X-ray wavelengths, performed with adequate sampling, open a privileged window on to the merger remnant.
We present a simple analytic model, that captures the key features of the emission of radiation from material ejected by the merger of neutron stars (NS), and construct the multi-band and bolometric luminosity light curves of the transient associated with GW170817, AT,2017gfo, using all available data. The UV to IR emission is shown to be consistent with a single $approx0.05$,M$_odot$ component ejecta, with a power-law velocity distribution between $approx 0.1,c$ and $>0.3,c$, a low opacity, {$kappa<1$,cm$^2$,g$^{-1}$}, and a radioactive energy release rate consistent with an initial $Y_{rm e}<0.4$. The late time spectra require an opacity of $kappa_ uapprox0.1$,cm$^2$,g$^{-1}$ at 1 to $2mu$m. If this opacity is provided entirely by Lanthanides, their implied mass fraction is $X_{rm Ln}approx10^{-3}$, approximately 30 times below the value required to account for the solar abundance. The inferred value of $X_{rm Ln}$ is uncertain due to uncertainties in the estimates of IR opacities of heavy elements, which also do not allow the exclusion of a significant contribution to the opacity by other elements (the existence of a slower ejecta rich in Lanthanides, that does not contribute significantly to the luminosity, can also not be ruled out). The existence of a relatively massive, $approx 0.05$,M$_odot$, ejecta with high velocity and low opacity is in tension with the results of numerical simulations of NS mergers.
The binary neutron-star (BNS) merger GW170817 is the first celestial object from which both gravitational waves (GWs) and light have been detected enabling critical insight on the pre-merger (GWs) and post-merger (light) physical properties of these phenomena. For the first $sim 3$ years after the merger the detected radio and X-ray radiation has been dominated by emission from a structured relativistic jet initially pointing $sim 15-25$ degrees away from our line of sight and propagating into a low-density medium. Here we report on observational evidence for the emergence of a new X-ray emission component at $delta t>900$ days after the merger. The new component has luminosity $L_x approx 5times 10^{38}rm{erg s^{-1}}$ at 1234 days, and represents a $sim 3.5sigma$ - $4.3sigma$ excess compared to the expectations from the off-axis jet model that best fits the multi-wavelength afterglow of GW170817 at earlier times. A lack of detectable radio emission at 3 GHz around the same time suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with synchrotron emission from a mildly relativistic shock generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this context our simulations show that the X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. However, radiation from accretion processes on the compact-object remnant represents a viable alternative to the kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission have been observed before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا