ترغب بنشر مسار تعليمي؟ اضغط هنا

The afterglow emission from a stratified jet in GRB 170817A

82   0   0.0 ( 0 )
 نشر من قبل Kangfa Cheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterglow light curves as observed $(F_{ u} propto T^{0.8})$. Here we reconsider the model of stratified ejecta with energy profile of $E(>Gamma beta)=E_0(Gamma beta)^{-k}$ as the origin of the afterglow light curves of the burst, where $Gamma$ and $beta$ are the Lorentz factor and speed of the ejecta, respectively. $k$ is the power-law slope of the energy profile. We consider the ejecta are collimated into jets. Two kinds of jet evolutions are investigated, including a lateral-spreading jet and a non-lateral-spreading jet. We fit the multi-band afterglow light curves, including the X-ray data at one thousand days post-burst, and find that both the models of the spreading and non-spreading jets can fit the light curves well, but the observed angular size of the source and the apparent velocity of the flux centroid for the spreading jet model are beyond the observation limits, while the non-spreading jet model meets the observation limits. Some of the best-fit parameters for the non-spreading jet model, such as the number density of the circumburst medium $sim10^{-2}$ cm$^{-3}$ and the total jet kinetic energy $E sim 4.8times 10^{51}$ erg, also appear plausible. The best-fit slope of the jet energy profile is $k sim 7.1$. Our results suggest that the afterglow of GRB 170817A may arise from the stratified jet and that the lateral spreading of the jet is not significant.



قيم البحث

اقرأ أيضاً

The jet structure of short gamma-ray bursts (GRBs) has been controversial after the detection of GRB 170817A as the electromagnetic counterparts to the gravitational wave event GW170817. Different authors use different jet structures for calculating the afterglow light curves. We formulated a method to inversely reconstruct a jet structure from a given off-axis GRB afterglow, without assuming any functional form of the structure. By systematically applying our inversion method, we find that more diverse jet structures are consistent with the observed afterglow of GRB 170817A within errors: such as hollow-cone, spindle, Gaussian, and power-law jet structures. In addition, the total energy of the reconstructed jet is arbitrary, proportional to the ambient density $n_0$, with keeping the same jet shape if the parameters satisfy the degeneracy combination $n_0 varepsilon_mathrm{B}^{(p+1)/(p+5)} varepsilon_mathrm{e}^{4(p-1)/(p+5)} = mathrm{const.}$. Observational accuracy less than $sim 6$ per cent is necessary to distinguish the different shapes, while the degeneracy of the energy scaling would be broken by observing the spectral breaks and viewing angle. Future events in denser environment with brighter afterglows and observable spectral breaks are ideal for our inversion method to pin down the jet structure, providing the key to the jet formation and propagation.
129 - Long Li , Zi-Gao Dai 2021
A relativistic electron-positron ($e^{+}e^{-}$) pair wind from a rapidly rotating, strongly magnetized neutron star (NS) would interact with a gamma-ray burst (GRB) external shock and reshapes afterglow emission signatures. Assuming that the merger r emnant of GW170817 is a long-lived NS, we show that a relativistic $e^{+}e^{-}$ pair wind model with a simple top-hat jet viewed off-axis can reproduce multi-wavelength afterglow lightcurves and superluminal motion of GRB 170817A. The Markov chain Monte Carlo (MCMC) method is adopted to obtain the best-fitting parameters, which give the jet half-opening angle $theta_{j}approx0.11$ rad, and the viewing angle $theta_{v}approx0.23$ rad. The best-fitting value of $theta_{v}$ is close to the lower limit of the prior which is chosen based on the gravitational-wave and electromagnetic observations. In addition, we also derive the initial Lorentz factor $Gamma_{0}approx47$ and the isotropic kinetic energy $E_{rm K,iso}approx2times10^{52}rm erg$. A consistence between the corrected on-axis values for GRB 170817A and typical values observed for short GRBs indicates that our model can also reproduce the prompt emission of GRB 170817A. An NS with a magnetic field strength $B_{p}approx1.6times10^{13}rm G$ is obtained in our fitting, indicating that a relatively low thermalization efficiency $etalesssim10^{-3}$ is needed to satisfy observational constraints on the kilonova. Furthermore, our model is able to reproduce a late-time shallow decay in the X-ray lightcurve and predicts that the X-ray and radio flux will continue to decline in the coming years.
The short-duration ($lesssim2;$s) GRB 170817A in the nearby ($D=40;$Mpc) elliptical galaxy NGC 4993 is the first electromagnetic counterpart of the first gravitational wave (GW) detection of a binary neutron-star (NS-NS) merger. It was followed by op tical, IR, and UV emission from half a day up to weeks after the event, as well as late time X-ray and radio emission. The early UV, optical, and IR emission showed a quasi-thermal spectrum suggestive of radioactive-decay powered kilonova-like emission. Comparison to kilonova models favors the formation of a short-lived ($sim1;$s) hypermassive NS, which is also supported by the $Delta tapprox1.74;$s delay between the GW chirp signal and the prompt GRB onset. However, the late onset of the X-ray (8.9$;$days) and radio (16.4$;$days) emission, together with the low isotropic equivalent $gamma$-ray energy output ($E_{rmgamma,iso}approx5times10^{46};$erg), strongly suggest emission from a narrow relativistic jet viewed off-axis. Here we set up a general framework for off-axis GRB jet afterglow emission, comparing analytic and numerical approaches, and showing their general predictions for short-hard GRBs that accompany binary NS mergers. The prompt GRB emission suggests a viewing angle well outside the jets core, and we compare the afterglow lightcurves expected in such a case to the X-ray to radio emission from GRB 170817A. We fit an afterglow off-axis jet model to the X-ray and radio data and find that the observations are explained by a viewing angle $theta_{rm obs}approx16^circ-26^circ$, GRB jet energy $Esim10^{48.5}-10^{49.5}~{rm erg}$, and external density $nsim10^{-5}-10^{-1}~{rm cm}^{-3}$ for a $xi_esim 0.1$ non-thermal electron acceleration efficiency.
107 - Jia Ren , Da-Bin Lin , Lu-lu Zhang 2020
The observed delay of GRB 170817A relative to GW170817 carries significant information about gamma-ray burst (GRB) physics and is subject to intense debate. In this letter, we put forward an approach to discuss the major source of this time delay. Fi rst of all, we use the structured jet model to fit the X-ray/optical/radio afterglows of GRB 170817A together with superluminal motion measured by the Very Long Baseline Interferometry. Our structured jet is modelled with angle-dependent energy and baryon loading. It is found that our model can well fit the afterglows of GRB 170817A. After that, the baryon loading in the jet is inferred based on our fitting results. By comparing the baryon loading to the mass outflow in different stages, we infer that the time lag of the jet launch relative to the merger is less than hundreds or tens of milliseconds. It suggests that the time delay of GRB 170817A relative to GW170817 is defined mostly by the spreading time of the jet propagating to its dissipation radius.
148 - A. M. Beloborodov 2010
The curvature of a relativistic blast wave implies that its emission arrives to observers with a spread in time. This effect is believed to wash out fast variability in the lightcurves of GRB afterglows. We note that the spreading effect is reduced i f emission is anisotropic in the rest-frame of the blast wave (i.e. if emission is limb-brightened or limb-darkened). In particular, synchrotron emission is almost certainly anisotropic, and may be strongly anisotropic, depending on details of electron acceleration in the blast wave. Anisotropic afterglows can display fast and strong variability at high frequencies (above the fast-cooling frequency). This may explain the existence of bizarre features in the X-ray afterglows of GRBs, such as sudden drops and flares. We also note that a moderate anisotropy can significantly delay the jet break in the lightcurve, which makes it harder to detect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا