ترغب بنشر مسار تعليمي؟ اضغط هنا

Resource allocation under uncertainty is a classical problem in city-scale cyber-physical systems. Consider emergency response as an example; urban planners and first responders optimize the location of ambulances to minimize expected response times to incidents such as road accidents. Typically, such problems deal with sequential decision-making under uncertainty and can be modeled as Markov (or semi-Markov) decision processes. The goal of the decision-maker is to learn a mapping from states to actions that can maximize expected rewards. While online, offline, and decentralized approaches have been proposed to tackle such problems, scalability remains a challenge for real-world use-cases. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then use Monte-Carlo planning for solving the smaller problems and managing the interaction between them. Finally, we use data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.
The cosmology of a standard model (SM) gauge singlet complex scalar dark matter (DM), stabilized by a reflection symmetry, is studied including all renormalizable interactions that preserve the reflection symmetry but can break the larger global U(1) symmetry of DM number. We find an interesting interplay of the ensuing DM self-scatterings and annihilations in generating the present DM density, and possible particle-antiparticle asymmetry in the DM sector. The role of DM self-scatterings in determining its present density and composition is a novel phenomenon. The simultaneous presence of the self-scatterings and annihilations is required to obtain a non-zero asymmetry, which otherwise vanishes due to unitarity sum rules.
The role of CP-violating decay and annihilation processes have been extensively studied in the context of generating cosmological particle-antiparticle asymmetries, both as sources of the asymmetry and its subsequent wash-out. In the scenarios for wh ich the lowest order source of CP-violation is scattering processes, we highlight the role of additional CP-conserving annihilations in indirectly affecting the asymmetry generation. This stems from the strong dependence of the relevant out-of-equilibrium number densities on the rate of CP-conserving reactions. The net asymmetry generated, in turn, is proportional to the out-of-equilibrium number densities and the rate of CP-violation. Such CP-conserving scatterings occur naturally in scenarios of baryogenesis, leptogenesis and asymmetric dark matter production through scattering, as we illustrate through several examples. We find that the asymmetric yields for relevant particle-antiparticle systems can vary by orders of magnitude depending upon the relative size of the CP-conserving and violating reaction rates.
We construct a semi-holographic effective theory in which the electron of a two-dimensional band hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands that preserve quasiparticle characteristic s. Besides the scaling dimension $ u$ of the fermionic operator in the holographic sector, the effective theory has two {dimensionless} couplings $alpha$ and $gamma$ determining the holographic and Fermi-liquid-type contributions to the self-energy respectively. We find that irrespective of the choice of the holographic critical sector, there exists a ratio of the effective couplings for which we obtain linear-in-T resistivity for a wide range of temperatures. This scaling persists to arbitrarily low temperatures when $ u$ approaches unity in which limit we obtain a marginal Fermi liquid with a specific temperature dependence of the self-energy.
A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized approaches have been applied to such problems, they have difficulty scaling to large decision problems. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation under uncertainty. We use the emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.
Using the upper bound on the inelastic reaction cross-section implied by S-matrix unitarity, we derive the thermally averaged maximum dark matter (DM) annihilation rate for general $k rightarrow 2$ number-changing reactions, with $k geq 2$, taking pl ace either entirely within the dark sector, or involving standard model fields. This translates to a maximum mass of the particle saturating the observed DM abundance, which, for dominantly $s$-wave annihilations, is obtained to be around $130$ TeV, $1$ GeV, $7$ MeV and $110$ keV, for $k=2,3,4$ and $5$, respectively, in a radiation dominated Universe, for a real or complex scalar DM stabilized by a minimal symmetry. For modified thermal histories in the pre-big bang nucleosynthesis era, with an intermediate period of matter domination, values of reheating temperature higher than $mathcal{O}(200)$ GeV for $k geq 4$, $mathcal{O}(1)$ TeV for $k=3$ and $mathcal{O}(50)$ TeV for $k=2$ are strongly disfavoured by the combined requirements of unitarity and DM relic abundance, for DM freeze-out before reheating.
We show that a general semi-annihilation scenario, in which a pair of dark matter (DM) particles annihilate to an anti-DM, and an unstable state that can mix with or decay to standard model states, can lead to particle anti-particle asymmetry in the DM sector. The present DM abundance, including the CP-violation in the DM sector and the resulting present asymmetry are determined entirely by a single semi-annihilation process at next-to-leading order. For large CP-violation in this process, we find that a nearly complete asymmetry can be obtained in the DM sector, with the observed DM density being dominated by the (anti-)DM particle. The presence of additional pair-annihilation processes can modify the ratio of DM and anti-DM number densities further, if the pair-annihilation is active subsequent to the decoupling of the semi-annihilation. For such a scenario, the required CP-violation for generating the same present asymmetry is generically much smaller, as compared to the scenario with only semi-annihilation present. We show that a minimal model with a complex scalar DM with cubic self-interactions can give rise to both semi- and pair-annihilations, with the required CP-violation generated at one-loop level. We also find that the upper bound on the DM mass from S-matrix unitarity in the purely asymmetric semi-annihilation scenario, with maximal CP-violation, is around 15 GeV, which is much stronger than in the WIMP and previously considered asymmetric DM cases, due to the required large non-zero chemical potential for such asymmetric DM.
We develop a method for obtaining exact time-dependent solutions in Jackiw-Teitelboim gravity coupled to non-conformal matter and study consequences for $NAdS_2$ holography. We study holographic quenches in which we find that the black hole mass incr eases. A semi-holographic model composed of an infrared $NAdS_2$ holographic sector representing the mutual strong interactions of trapped impurities confined at a spatial point is proposed. The holographic sector couples to the position of a displaced impurity acting as a self-consistent boundary source. This effective $0+1-$dimensional description has a total conserved energy. Irrespective of the initial velocity of the particle, the black hole mass initially increases, but after the horizon runs away to infinity in the physical patch, the mass vanishes in the long run. The total energy is completely transferred to the kinetic energy or the self-consistent confining potential energy of the impurity. For initial velocities below a critical value determined by the mutual coupling, the black hole mass changes sign in finite time. Above this critical velocity, the initial condition of the particle can be retrieved from the $SL(2,R)$ invariant exponent that governs the exponential growth of the bulk gravitational $SL(2,R)$ charges at late time.
We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.
Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs mass. We propose such a study at the LHC by utilizing a representative model with a new scalar fiel d ($S$) coupled to the Standard Model Higgs doublet ($H$) in a form $ |S|^2 |H|^2$. In the process $p p rightarrow h^* rightarrow ZZ$, the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at $2m_S$, leads to a measurable deviation in the differential distribution of the $Z$-pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the $5sigma$ level at the high-luminosity LHC, improving further with the upgraded $27$ TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا