ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-shell Higgs Probe to Naturalness

101   0   0.0 ( 0 )
 نشر من قبل Satyanarayan Mukhopadhyay
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field ($S$) coupled to the Standard Model Higgs doublet ($H$) in a form $ |S|^2 |H|^2$. In the process $p p rightarrow h^* rightarrow ZZ$, the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at $2m_S$, leads to a measurable deviation in the differential distribution of the $Z$-pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the $5sigma$ level at the high-luminosity LHC, improving further with the upgraded $27$ TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.



قيم البحث

اقرأ أيضاً

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production thro ugh an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Ener
207 - Shaouly Bar-Shalom 2014
We investigate naturalness in the Standard Model (SM) Higgs sector using effective field theory (EFT) techniques and find the requirements on the new heavy physics that can potentially cure the little hierarchy problem below a scale $Lambda gg O(1 ~{ rm TeV})$, assuming the new heavy particles have a mass larger than $ Lambda $. In particular, we determine the conditions under which the 1-loop corrections to $ m_h $ from the heavy new physics can balance those created by SM loop effects up to the naturalness scale $Lambda$, a condition we denote by EFT Naturalness. We obtain the higher dimensional ($n ge 5$) operators in the effective Lagrangian that can lead to EFT Naturalness, and classify the underlying heavy theories that can generate such operators at tree-level. We also address the experimental constraints on our EFT Naturalness setup and discuss the expected experimental signals of the new heavy physics associated with EFT Naturalness.
The Standard Model (SM) is usually considered to be unnatural because the scalar Higgs mass receives a quadratic divergent correction. We suggest a new way to solve the naturalness problem from point of view of renormalization group method. Our appro ach is illustrated through the familiar $phi^4$ theory. A renormalization group equation for scalar field mass is proposed by introducing a subtraction scale. We give a non-trivial prediction: the Higss mass at short-distance is a damping exponential function of the energy scale. It follows from a characteristic of the SM that the couplings to Higgs are proportional to field masses, in particular the Higgs self-interactions. In the ultraviolent limit, the Higgs mass approaches to a mass called by Veltman mass which is at the order of the electroweak scale. The fine-tuning is not necessary. The Higgs naturalness problem is solved by radiative corrections themselves.
We consider the production of four charged leptons in hadron collisions and compute the next-to-leading order (NLO) QCD corrections to the loop-induced gluon fusion contribution by consistently accounting for the Higgs boson signal, its corresponding background and their interference. The contribution from heavy-quark loops is exactly included in the calculation except for the two-loop $ggto ZZto 4ell$ continuum diagrams, for which the unknown heavy-quark effects are approximated through a reweighting procedure. Our calculation is combined with the next-to-next-to-leading order QCD and NLO electroweak corrections to the $qbar{q}to4ell$ process, including all partonic channels and consistently accounting for spin correlations and off-shell effects. The computation is implemented in the MATRIX framework and allows us to separately study the Higgs boson signal, the background and the interference contributions, whose knowledge can be used to constrain the Higgs boson width through off-shell measurements. Our state-of-the-art predictions for the invariant-mass distribution of the four leptons are in good agreement with recent ATLAS data.
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential $simleft(Phi^daggerPhi-frac{v^2}2right)^N$ with $N$ arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields $X_{1,2}$, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the $Ntoinfty$ case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا