ﻻ يوجد ملخص باللغة العربية
Resource allocation under uncertainty is a classical problem in city-scale cyber-physical systems. Consider emergency response as an example; urban planners and first responders optimize the location of ambulances to minimize expected response times to incidents such as road accidents. Typically, such problems deal with sequential decision-making under uncertainty and can be modeled as Markov (or semi-Markov) decision processes. The goal of the decision-maker is to learn a mapping from states to actions that can maximize expected rewards. While online, offline, and decentralized approaches have been proposed to tackle such problems, scalability remains a challenge for real-world use-cases. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then use Monte-Carlo planning for solving the smaller problems and managing the interaction between them. Finally, we use data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.
A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized approaches have been
Multiple robotic systems, working together, can provide important solutions to different real-world applications (e.g., disaster response), among which task allocation problems feature prominently. Very few existing decentralized multi-robotic task a
This paper investigates the cooperative planning and control problem for multiple connected autonomous vehicles (CAVs) in different scenarios. In the existing literature, most of the methods suffer from significant problems in computational efficienc
Electric power distribution systems will encounter fluctuations in supply due to the introduction of renewable sources with high variability in generation capacity. It is therefore necessary to provide algorithms that are capable of dynamically findi
A Load Balancing Relay Algorithm (LBRA) was proposed to solve the unfair spectrum resource allocation in the traditional mobile MTC relay. In order to obtain reasonable use of spectrum resources, and a balanced MTC devices (MTCDs) distribution, spect