ﻻ يوجد ملخص باللغة العربية
The cosmology of a standard model (SM) gauge singlet complex scalar dark matter (DM), stabilized by a reflection symmetry, is studied including all renormalizable interactions that preserve the reflection symmetry but can break the larger global U(1) symmetry of DM number. We find an interesting interplay of the ensuing DM self-scatterings and annihilations in generating the present DM density, and possible particle-antiparticle asymmetry in the DM sector. The role of DM self-scatterings in determining its present density and composition is a novel phenomenon. The simultaneous presence of the self-scatterings and annihilations is required to obtain a non-zero asymmetry, which otherwise vanishes due to unitarity sum rules.
A brief overview is given about some issues in current astroparticle physics, focusing on the dark matter (DM) problem, where the connection to LHC physics is particularly strong. New data from the Planck satellite has made the evidence in favour of
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is know
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from gh
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme
Non-thermalized dark matter is a cosmologically valid alternative to the paradigm of weakly interacting massive particles. For dark matter belonging to a $Z_2$-odd sector that contains in addition a thermalized mediator particle, dark matter producti