ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the approximate control given by the computational me thod. The proofs are based on the regularity properties of the control given by the Hilbert Uniqueness Method, together with the stability properties of the numerical scheme. Numerical experiments illustrate the results.
The exact distributed controllability of the semilinear heat equation $partial_{t}y-Delta y + g(y)=f ,1_{omega}$ posed over multi-dimensional and bounded domains, assuming that $gin C^1(mathbb{R})$ satisfies the growth condition $limsup_{rto infty} g (r)/(vert rvert ln^{3/2}vert rvert)=0$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that $g^prime$ does not grow faster than $beta ln^{3/2}vert rvert$ at infinity for $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $mathbb{R}$ with exponent $pin [0,1]$, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations.
The exact distributed controllability of the semilinear wave equation $partial_{tt}y-Delta y + g(y)=f ,1_{omega}$ posed over multi-dimensional and bounded domains, assuming that $gin C^1(mathbb{R})$ satisfies the growth condition $limsup_{rto infty} g(r)/(vert rvert ln^{1/2}vert rvert)=0$ has been obtained by Fu, Yong and Zhang in 2007. The proof based on a non constructive Leray-Schauder fixed point theorem makes use of precise estimates of the observability constant for a linearized wave equation. Assuming that $g^prime$ does not grow faster than $beta ln^{1/2}vert rvert$ at infinity for $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $mathbb{R}$ with exponent $sin (0,1]$, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.
It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with con trols $fin L^2((0,1)times(0,T))$, for any $T>0$ and any nonempty open subset $omega$ of $(0,1)$, assuming that $gin mathcal{C}^1(R)$ does not grow faster than $betavert xvert ln^{2}vert xvert$ at infinity for some $beta>0$ small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not constructive. In this article, we design a constructive proof and algorithm for the exact controllability of semilinear 1D wave equations. Assuming that $g^prime$ does not grow faster than $beta ln^{2}vert xvert$ at infinity for some $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $R$ with exponent $sin[0,1]$, we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.
The exact distributed controllability of the semilinear wave equation $y_{tt}-y_{xx} + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $vert g(s)vert /(vert svert log^{2}(vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Zuazua in the nineties. The proof based on a Leray-Schauder fixed point argument makes use of precise estimates of the observability constant for a linearized wave equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein L^infty_{loc}(mathbb{R})$, that $sup_{a,bin mathbb{R},a eq b} vert g^prime(a)-g^{prime}(b)vert/vert a-bvert^r<infty $ for some $rin (0,1]$ and that $g^prime$ satisfies the growth condition $vert g^prime(s)vert/log^{2}(vert svert)rightarrow 0$ as $vert svert rightarrow infty$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach guarantees the convergence whatever the initial element of the sequence may be. In particular, after a finite number of iterations, the convergence is super linear with rate $1+r$. This general method provides a constructive proof of the exact controllability for the semilinear wave equation.
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a fixed point argument makes use of precise estimates of the observability constant for a linearized heat equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein W^{s,infty}(mathbb{R})$ for one $sin (0,1]$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach, generalizes Newton type methods and guarantees the convergence whatever be the initial element of the sequence. In particular, after a finite number of iterations, the convergence is super linear with a rate equal to $1+s$. Numerical experiments in the one dimensional setting support our analysis.
We consider a stabilized finite element method based on a spacetime formulation, where the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave equation is considered, where data is known in an in terior subset of spacetime. For this problem, we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical scheme is optimal with respect to stability properties of the continuum problem and the interpolation errors of approximating with polynomial spaces. Numerical examples are provided that illustrate the methodology.
This work is concerned with the distributed controllability of the one-dimensional wave equation over non-cylindrical domains. The controllability in that case has been obtained in [Castro-Cindea-Munch, Controllability of the linear one-dimensional w ave equation with inner moving forces, SIAM J. Control Optim 2014] for domains satisfying the usual geometric optics condition. In the present work, we first show that the corresponding observability property holds true uniformly in a precise class of non-cylindrical domains. Within this class, we then consider, for a given initial datum, the problem of the optimization of the control support and prove its well-posedness. Numerical experiments are then discussed and highlight the influence of the initial condition on the optimal domain.
We introduce and analyze a space-time least-squares method associated to the unsteady Navier-Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we constr uct a minimizing sequence for the least-squares functional which converges strongly to a solution of the Navier-Stokes system. After a finite number of iterates related to the value of the viscosity constant, the convergence is quadratic. Numerical experiments within the two dimensional case support our analysis. This globally convergent least-squares approach is related to the damped Newton method when used to solve the Navier-Stokes system through a variational formulation.
The Petrowsky type equation $y_{tt}^eps+eps y_{xxxx}^eps - y_{xx}^eps=0$, $eps>0$ encountered in linear beams theory is null controllable through Neumann boundary controls. Due to the boundary layer of size of order $sqrt{eps}$ occurring at the extre mities, these boundary controls get singular as $eps$ goes to $0$. Using the matched asymptotic method, we describe the boundary layer of the solution $y^eps$ then derive a rigorous second order asymptotic expansion of the control of minimal $L^2-$norm, with respect to the parameter $eps$. In particular, we recover that the leading term of the expansion is a null Dirichlet control for the limit hyperbolic wave equation, in agreement with earlier results due to J-.L. Lions in the eighties. Numerical experiments support the analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا