ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a sample of eight massive galaxies that are extreme outliers (3-5$sigma$) in the M$_{bullet}$-M$_mathrm{bulge}$ local scaling relation. Two of these galaxies are confirmed to host extremely large super massive black holes (SMBHs), whereas th e virial mass estimates for the other six are also consistent with having abnormally large SMBHs. From the analysis of their star formation histories and their structural properties we find that all these extreme outliers can be considered as relic galaxies from the early (z$sim$2) Universe: i.e. they are compact (R$_{mathrm{e}}$$<$2 kpc) and have purely old stellar populations (t$gtrsim$10 Gyr). In order to explain the nature of such deviations from the local relations, we propose a scenario in which the hosts of these uber-massive SMBHs are galaxies that have followed a different evolutionary path than the two-phase growth channel assumed for massive galaxies. Once the SMBH and the core of the galaxy are formed at z$sim$2, the galaxy skips the second phase, remaining structurally untouched and without further mass and size increase. We show that if the outliers had followed the normal evolutionary path by growing in size via merger activity, the expected (mild) growth in mass would place them closer to the observed local relations. Our results suggest that the SMBH growth epoch for the most massive galaxies stopped $sim$10Gyr ago.
We present a detailed stellar population analysis for a sample of 24 early-type galaxies belonging to the rich cluster RXJ0152.7-1357 at z=0.83. We have derived the age, metallicity, abundance pattern and star formation history for each galaxy indivi dually, to further characterize this intermediate-z reference cluster. We then study how these stellar population parameters depend on local environment. This provides a better understanding on the formation timescales and subsequent evolution of the substructures in this cluster. We have also explored the evolutionary link between z$sim$0.8 ETGs and those in the local Universe by comparing the trends that the stellar population parameters follow with galaxy velocity dispersion at each epoch. We find that the ETGs in Coma are consistent with being the (passively-evolving) descendants of the ETG population in RXJ10152.7-1357. Furthermore, our results favor a downsizing picture, where the subclumps centers were formed first. This central parts contain the most massive galaxies, which formed the bulk of their stars in a short, burst-like event at high-z. On the contrary, the cluster outskirts are populated with less massive, smaller galaxies, which show a wider variety of Star Formation Histories. In general, they present extended star formation episodes over cosmic time, which seems to be related to their posterior incorporation into the cluster, around 4Gyr later after the initial event of formation.
As early as 10 Gyr ago, galaxies with more than 10^11 Msun in stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (<0.1%) may have survived untouched till today. Searches for such relic galaxies, useful windows to explore the early Universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M*>10^11 Msun; Re<1.5 kpc) have been found in the local Universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC1277 (in the Perseus cluster at a distance of 73 Mpc), which fulfills all the criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H]=0.20+-0.04) and alpha enriched ([alpha/Fe]=0.4+-0.1). This suggests a very short formation time scale for the bulk of stars of this galaxy. This object also rotates very fast (Vrot~300 km/s) and has a large velocity dispersion (sigma>300 km/s). NGC1277 will allow future explorations in full detail of properties such as the structure, internal dynamics, metallicity, dust content and initial mass function at around 10-12 Gyr back in time when the first massive galaxies were built.
Using Gemini North telescope ultra deep and high resolution (sub-kpc) K-band adaptive optics imaging of a sample of 4 nearby (z~0.15) massive (~10^{11}M_sun) compact (R<1.5 kpc) galaxies, we have explored the structural properties of these rare objec ts with an unprecedented detail. Our surface brightness profiles expand over 12 magnitudes in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities ~10^{6} M_sun/kpc^{2} at radial distances of ~15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, resembling visually S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around 2-3x10^{10}M_sun stellar mass from their inner (R<1.7 kpc) region towards their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا