ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra deep sub-kpc view of nearby massive compact galaxies

147   0   0.0 ( 0 )
 نشر من قبل Ignacio Trujillo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Gemini North telescope ultra deep and high resolution (sub-kpc) K-band adaptive optics imaging of a sample of 4 nearby (z~0.15) massive (~10^{11}M_sun) compact (R<1.5 kpc) galaxies, we have explored the structural properties of these rare objects with an unprecedented detail. Our surface brightness profiles expand over 12 magnitudes in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities ~10^{6} M_sun/kpc^{2} at radial distances of ~15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, resembling visually S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around 2-3x10^{10}M_sun stellar mass from their inner (R<1.7 kpc) region towards their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.



قيم البحث

اقرأ أيضاً

150 - M. Hilker 2010
Ultra-compact dwarf galaxies (UCDs) are predominatly found in the cores of nearby galaxy clusters. Besides the Fornax and Virgo cluster, UCDs have also been confirmed in the twice as distant Hydra I and Centaurus clusters. Having (nearly) complete sa mples of UCDs in some of these clusters allows the study of the bulk properties with respect to the environment they are living in. Moreover, the relation of UCDs to other stellar systems in galaxy clusters, like globular clusters and dwarf ellipticals, can be investigated in detail with the present data sets. The general finding is that UCDs seem to be a heterogenous class of objects. Their spatial distribution within the clusters is in between those of globular clusters and dwarf ellipticals. In the colour-magnitude diagram, blue/metal-poor UCDs coincide with the sequence of nuclear star clusters, whereas red/metal-rich UCDs reach to higher masses and might have originated from the amalgamation of massive star cluster complexes in merger or starburst galaxies.
We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spat ially resolved. Combined with the star formation rate surface density traced by H$alpha$ and 24 $mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$alpha$ and 24 $mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where star formation rate is law. These two effects can flatten the power law correlation and produce the apparent linear slope. The super linear slope from the CO($J$=1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.
166 - Frank Bigiel 2008
(Abridged) We present a comprehensive analysis of the relationship between star formation rate surface density (SFR SD) and gas surface density (gas SD) at sub-kpc resolution in a sample of 18 nearby galaxies. We use high resolution HI data from THIN GS, CO data from HERACLES and BIMA SONG, 24 micron data from the Spitzer Space Telescope, and UV data from GALEX. We target 7 spiral galaxies and 11 late-type/dwarf galaxies and investigate how the star formation law differs between the H2-dominated centers of spiral galaxies, their HI-dominated outskirts and the HI-rich late-type/dwarf galaxies. We find that a Schmidt-type power law with index N=1.0+-0.2 relates the SFR SD and the H2 SD across our sample of spiral galaxies, i.e., that H2 forms stars at a constant efficiency in spirals. The average molecular gas depletion time is ~2*10^9 yrs. We interpret the linear relation and constant depletion time as evidence that stars are forming in GMCs with approximately uniform properties and that the H2 SD may be more a measure of the filling fraction of giant molecular clouds than changing conditions in the molecular gas. The relationship between total gas SD and SFR SD varies dramatically among and within spiral galaxies. Most galaxies show little or no correlation between the HI SD and the SFR SD. As a result, the star formation efficiency (SFE = SFR SD / gas SD) varies strongly across our sample and within individual galaxies. We show that in spirals the SFE is a clear function of radius, while the dwarf galaxies in our sample display SFEs similar to those found in the outer optical disks of the spirals. Another general feature of our sample is a sharp saturation of the HI SD at ~9 M_sol/pc^2 in both the spiral and dwarf galaxies.
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the ra nge of far-IR/submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs) of these objects from 60 to 850 microns. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs are fitted using parametric dust models to determine the range of dust temperatures and emissivities. We find evidence for colder dust than has previously been found in external galaxies, with T<20K. Such cold temperatures are found using both the standard single temperature dust model with variable emissivity beta, or a two dust temperature model with beta fixed at 2. We also compare our results to studies of distant submm galaxies (SMGs) which have been claimed to contain cooler dust than their local counterparts. We find that including our sample of 468 galaxies significantly reduces the distinction between the two populations. Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm the presence of the colder dust found through parameteric fitting. We thus conclude that cold (T<20K) dust is a significant and largely unexplored component of many nearby galaxies.
We aim at quantifying the specific frequency of UCDs in a range of environments and at relating this to the frequency of globular clusters (GCs) and potential progenitor dwarf galaxies. Are the frequencies of UCDs consistent with being the bright tai l of the GC luminosity function (GCLF)? We propose a definition for the specific frequency of UCDs, S_{N,UCD}=N_{UCD}*10^{0.4*(M_{V,host}-M_{V,0})}*c_{w}. The parameter M_{V,0} is the zeropoint of the definition, chosen such that the specific frequency of UCDs is the same as those of globular clusters, S_{N,GC}, if UCDs follow a simple extrapolation of the GCLF. The parameter c_{w} is a correction term for the GCLF width sigma. We apply our definition of S_{N,UCD} to results of spectroscopic UCD searches in the Fornax, Hydra and Centaurus galaxy clusters, two Hickson Compact Groups, and the Local Group. This includes a large database of 180 confirmed UCDs in Fornax. We find that the specific frequencies derived for UCDs match those of GCs very well, to within 10-50%. The ratio {S_{N,UCD}}/{S_{N,GC}} is 1.00 +- 0.44 for the four environments Fornax, Hydra, Centaurus, and Local Group, which have S_{N,GC} values. This good match also holds for individual giant galaxies in Fornax and in the Fornax intracluster-space. The error ranges of the derived UCD specific frequencies in the various environments then imply that not more than 50% of UCDs were formed from dwarf galaxies. We show that such a scenario would require >90% of primordial dwarfs in galaxy cluster centers (<100 kpc) to have been stripped of their stars. We conclude that the number counts of UCDs are fully consistent with them being the bright tail of the GC population. From a statistical point of view there is no need to invoke an additional formation channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا