ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC1277: a massive compact relic galaxy in the nearby Universe

60   0   0.0 ( 0 )
 نشر من قبل Anna Ferr\\'e-Mateu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As early as 10 Gyr ago, galaxies with more than 10^11 Msun in stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (<0.1%) may have survived untouched till today. Searches for such relic galaxies, useful windows to explore the early Universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M*>10^11 Msun; Re<1.5 kpc) have been found in the local Universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC1277 (in the Perseus cluster at a distance of 73 Mpc), which fulfills all the criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H]=0.20+-0.04) and alpha enriched ([alpha/Fe]=0.4+-0.1). This suggests a very short formation time scale for the bulk of stars of this galaxy. This object also rotates very fast (Vrot~300 km/s) and has a large velocity dispersion (sigma>300 km/s). NGC1277 will allow future explorations in full detail of properties such as the structure, internal dynamics, metallicity, dust content and initial mass function at around 10-12 Gyr back in time when the first massive galaxies were built.


قيم البحث

اقرأ أيضاً

128 - M. Hilker 2010
Ultra-compact dwarf galaxies (UCDs) are predominatly found in the cores of nearby galaxy clusters. Besides the Fornax and Virgo cluster, UCDs have also been confirmed in the twice as distant Hydra I and Centaurus clusters. Having (nearly) complete sa mples of UCDs in some of these clusters allows the study of the bulk properties with respect to the environment they are living in. Moreover, the relation of UCDs to other stellar systems in galaxy clusters, like globular clusters and dwarf ellipticals, can be investigated in detail with the present data sets. The general finding is that UCDs seem to be a heterogenous class of objects. Their spatial distribution within the clusters is in between those of globular clusters and dwarf ellipticals. In the colour-magnitude diagram, blue/metal-poor UCDs coincide with the sequence of nuclear star clusters, whereas red/metal-rich UCDs reach to higher masses and might have originated from the amalgamation of massive star cluster complexes in merger or starburst galaxies.
201 - Ronald Lasker 2013
We present orbit-based dynamical models and stellar population analysis of galaxy SDSS J151741.75-004217.6, a low-redshift (z=0.116) early-type galaxy (ETG) which, for its moderate luminosity, has an exceptionally high velocity dispersion. We aim to determine the central black hole mass (M_bh), the i-band stellar mass-to-light ratio, and the low-mass slope of the initial mass function (IMF). Combining constraints from HST imaging and longslit kinematic data with those from fitting the SDSS spectrum with stellar populations models of varying IMF, we show that this galaxy has a large fraction of low-mass stars, significantly higher than implied even by a Salpeter IMF. We exclude a Chabrier/Kroupa as well as a unimodal (i.e. single-segment) IMF, while a bimodal (low-mass tapered) shape is consistent with the dynamical constraints. Thereby, our study demonstrates that a very bottom-heavy IMF can exist even in an L* ETG. We place an upper limit of ~10^{10.5}M_sun on M_bh, which still leaves open the possibility of an extremely massive BH.
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies th at populated the primitive Universe. We have combined optical to near-infrared line-strength indices in order to infer, out to 1.5 Reff, the IMF of the nearby relic massive galaxy NGC 1277. The IMF of this galaxy is bottom-heavy at all radii, with the fraction of low-mass stars being at least a factor of two larger than that found in the Milky Way. The excess of low-mass stars is present throughout the galaxy, while the velocity dispersion profile shows a strong decrease with radius. This behaviour suggests that local velocity dispersion is not the only driver of the observed IMF variations seen among nearby early-type galaxies. In addition, the excess of low-mass stars shown in NGC 1277 could reflect the effect on the IMF of dramatically different and intense star formation processes at z~2, compared to the less extreme conditions observed in the local Universe.
Using data from the Sloan Digital Sky Survey (SDSS; data release 7), we have conducted a search for local analogs to the extremely compact, massive, quiescent galaxies that have been identified at z > 2. We show that incompleteness is a concern for s uch compact galaxies, particularly for low redshifts (z < ~0.05) as a result of the SDSS spectroscopic target selection algorithm. We have identified 63 massive red sequence galaxies at 0.066 < z < 0.12 that are smaller than the median size-mass relation by a factor of 2 or more. Consistent with expectations from the virial theorem, the median offset from the mass-velocity dispersion relation for these galaxies is 0.12 dex. We do not find any galaxies with sizes and masses comparable to those observed at z ~ 2, implying a decrease in the comoving number density (at fixed size and mass) by a factor of > 5000. This result cannot be explained by incompleteness: at 0.066 < z <0.12, the SDSS spectroscopic sample should typically be ~75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ~20%. To confirm that the absence of such compact massive galaxies in SDSS is not a spectroscopic selection effect, we have also looked for such galaxies in the SDSS photometric catalog, using photometric redshifts. While we do find signs of a bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high redshift results, it is clear that massive galaxies must undergo significant structural evolution over z<2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism like major mergers cannot be the primary driver of this strong size evolution.
At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation(1-4). It is believed that they were formed in intense nuclear star bursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions(5,6), but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies(7). Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which surprisingly turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst(8). The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo(9). This result confirms previous indirect indications(10-13) that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا