ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive relic galaxies challenge the co-evolution of SMBHs and their host galaxies

102   0   0.0 ( 0 )
 نشر من قبل Anna Ferr\\'e-Mateu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a sample of eight massive galaxies that are extreme outliers (3-5$sigma$) in the M$_{bullet}$-M$_mathrm{bulge}$ local scaling relation. Two of these galaxies are confirmed to host extremely large super massive black holes (SMBHs), whereas the virial mass estimates for the other six are also consistent with having abnormally large SMBHs. From the analysis of their star formation histories and their structural properties we find that all these extreme outliers can be considered as relic galaxies from the early (z$sim$2) Universe: i.e. they are compact (R$_{mathrm{e}}$$<$2 kpc) and have purely old stellar populations (t$gtrsim$10 Gyr). In order to explain the nature of such deviations from the local relations, we propose a scenario in which the hosts of these uber-massive SMBHs are galaxies that have followed a different evolutionary path than the two-phase growth channel assumed for massive galaxies. Once the SMBH and the core of the galaxy are formed at z$sim$2, the galaxy skips the second phase, remaining structurally untouched and without further mass and size increase. We show that if the outliers had followed the normal evolutionary path by growing in size via merger activity, the expected (mild) growth in mass would place them closer to the observed local relations. Our results suggest that the SMBH growth epoch for the most massive galaxies stopped $sim$10Gyr ago.



قيم البحث

اقرأ أيضاً

We study the preferred environments of $z sim 0$ massive relic galaxies ($M_star gtrsim 10^{10}~mathrm{M_odot}$ galaxies with little or no growth from star formation or mergers since $z sim 2$). Significantly, we carry out our analysis on both a larg e cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since $z sim 2$ is ~0.04 per cent for the whole massive galaxy population with $M_star > 10^{10}~mathrm{M_odot}$. This fraction rises to ~0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as $M_star gtrsim 10^{10}~mathrm{M_odot}$ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find $1.11 pm 0.05$ per cent of relics among massive galaxies. This fraction rises to $2.4 pm 0.4$ per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.
Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters are present mainly in faint galaxies while upermassive black holes are common in galaxies with masses $geq 10^{10}$ M$_odo t $. In the intermediate galactic mass range both types of central massive objects (CMOs) are found. Here we present our collection of a huge set of nuclear star cluster and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of nuclear star clusters and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and nuclear star clusters. The $M_{MBH}-{sigma}$ has a slope of $5.19pm 0.28$ while $M_{NSC}-{sigma}$ has the much smaller slope of $1.84pm 0.64$. The slopes of the CMO mass- host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass vs host galaxy mass at high host masses.
92 - Xiaohui Fan 2019
The discovery of luminous quasars at redshifts up to 7.5 demonstrates the existence of several billion M_sun supermassive black holes (SMBHs) less than a billion years after the Big Bang. They are accompanied by intense star formation in their host g alaxies, pinpointing sites of massive galaxy assembly in the early universe, while their absorption spectra reveal an increasing neutral intergalactic medium (IGM) at the epoch of reionization. Extrapolating from the rapid evolution of the quasar density at z=5-7, we expect that there is only one luminous quasar powered by a billion M_sun SMBH in the entire observable universe at z~9. In the next decade, new wide-field, deep near-infrared (NIR) sky surveys will push the redshift frontier to the first luminous quasars at z~9-10; the combination with new deep X-ray surveys will probe fainter quasar populations that trace earlier phases of SMBH growth. The identification of these record-breaking quasars, and the measurements of their BH masses and accretion properties require sensitive spectroscopic observations with next generation of ground-based and space telescopes at NIR wavelengths. High-resolution integral-field spectroscopy at NIR, and observations at millimeter and radio wavelengths, will together provide a panchromatic view of the quasar host galaxies and their galactic environment at cosmic dawn, connecting SMBH growth with the rise of the earliest massive galaxies. Systematic surveys and multiwavelength follow-up observations of the earliest luminous quasars will strongly constrain the seeding and growth of the first SMBHs in the universe, and provide the best lines of sight to study the history of reionization.
The most heavily-obscured, luminous quasars might represent a specific phase of the evolution of actively accreting supermassive black holes and their host galaxies, possibly related to mergers. We investigated a sample of the most luminous quasars a t $zapprox 1-3$ in the GOODS fields, selected in the mid-infrared band through detailed spectral energy distribution (SED) decomposition. The vast majority of these quasars (~80%) are obscured in the X-ray band and ~30% of them to such an extent, that they are undetected in some of the deepest (2 and 4 Ms) Chandra X-ray data. Although no clear relation is found between the star-formation rate of the host galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly representing an earlier stage of evolution, after which the system is relaxing and becoming unobscured.
We aim to understand the properties at the locations of supernova (SN) explosion in their host galaxies and compare with the global properties of the host galaxies. We use the integral field spectrograph (IFS) of Mapping Nearby Galaxies (MaNGA) at Ap ache Point Observatory (APO) to get the 2D maps of the parameter properties for eleven SN host galaxies. The sample galaxies are analyzed one by one in details on their properties of velocity field, star formation rate, oxygen abundance and stellar mass etc. This sample of SN host galaxies have redshifts around $z$ $sim$ 0.03, which is higher than those of the previous related works. The higher redshift distribution allows us to obtain the properties of more distant SN host galaxies. Metallicity (gas-phase oxygen abundance) estimated from integrated spectra could represent the local metallicity at SN explosion sites with small bias. All the host galaxies in our sample are metal-rich galaxies (12+log(O/H) $>$ 8.5) except for NGC 6387, which means supernovae (SNe) may be more inclined to explode in rich-metallicity galaxies. There is a positive relation between global gas-phase oxygen abundance and the stellar mass of host galaxies. We also try to compare the differences of the host galaxies between SN Ia and SN II. In our sample, both SNe Ia and SNe II could explode in normal galaxies, while SNe II also could explode in an interactive or merger system, which has star formation in the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا