ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable intelligent surfaces (RISs) empowered high-frequency (HF) wireless systems are expected to become the supporting pillar for several reliability and data rate hungry applications. Such systems are, however, sensitive to misalignment and atmospheric phenomena including turbulence. Most of the existing studies on the performance assessment of RIS-empowered wireless systems ignore the impact of the aforementioned phenomena. Motivated by this, the current contribution presents a theoretical framework for analyzing the performance of multi-RIS empowered HF wireless systems. More specifically, we statistically characterize the cascaded composite turbulence and misalignment channels in terms of probability density and cumulative distribution functions. Building upon the derived analytical expressions, we present novel closed-form formulas that quantify the joint impact of turbulence and misalignment on the outage performance for two scenarios of high interest namely cascaded multi-RIS-empowered free space optics (FSO) and terahertz (THz) wireless systems. In addition, we provide an insightful outage probability upper-bound for a third scenario that considers parallel multi-RIS-empowered FSO systems. Our results highlight the importance of accurately modeling both turbulence and misalignment when assessing the performance of such systems.
This paper presents an analytical pathloss model for reconfigurable intelligent surface (RIS) assisted terahertz (THz) wireless systems. Specifically, the model accommodates both the THz link and the RIS particularities. Finally, we derive a closed-f orm expression that returns the optimal phase shifting of each RIS reflection unit. The derived pathloss model is validated through extensive electromagnetic simulations and is expected to play a key role in the design of RIS-assisted THz wireless systems.
In the recent years, the proliferation of wireless data traffic has led the scientific community to explore the use of higher unallocated frequency bands, such as the millimeter wave and terahertz (0.1-10 THz) bands. However, they are prone to blocka ges from obstacles laid in the transceiver path. To address this, in this work, the use of a reconfigurable-intelligent-surface (RIS) to restore the link between a transmitter (TX) and a receiver (RX), operating in the D-band (110-170 GHz) is investigated. The system performance is evaluated in terms of pathgain and capacity considering the RIS design parameters, the TX/RX-RIS distance and the elevation angles from the center of the RIS to the transceivers.
Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting new insights, accelerating material and structure discoveries, and designing experience as well as supporting nano-scale communications and networks. However, despite these efforts, the use of ML in nano-scale biomedical engineering remains still under-explored in certain areas and research challenges are still open in fields such as structure and material design and simulations, communications and signal processing, and bio-medicine applications. In this article, we review the existing research regarding the use of ML in nano-scale biomedical engineering. In more detail, we first identify and discuss the main challenges that can be formulated as ML problems. These challenges are classified into the three aforementioned main categories. Next, we discuss the state of the art ML methodologies that are used to countermeasure the aforementioned challenges. For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations. Finally, we conclude the article with insightful discussions, that reveal research gaps and highlight possible future research directions.
This paper presents the analytic framework for evaluating the ergodic capacity (EC) of the reconfigurable intelligent surface (RIS) assisted systems. Moreover, high-signal-to-noise-ratio and high-number of reflection units (RUs) approximations for th e EC are provided. Finally, the special case in which the RIS is equipped with a single RU is investigated. Our analysis is verified through respective Monte Carlo simulations, which highlight the accuracy of the proposed framework.
This paper focuses on quantifying the outage performance of terahertz (THz) relaying systems. In this direction, novel closed-form expressions for the outage probability of a dual-hop relaying system, in which both the source-relay and relay-destinat ion links suffer from fading and stochastic beam misalignment, are extracted. Our results reveal the importance of taking into account the impact of beam misalignment when characterizing the outage performance of the system as well as when selecting the transmission frequencies.
This article discusses the fundamental architectures for optical wireless systems for biomedical applications. After summarizing the main applications and reporting their requirements, {we describe the characteristics of the transdermal and in-body o ptical channels as well as the challenges that they impose in the design of communication systems.} In more detail, we provide three possible architectures for transdermal communications, namely electro-optical (EO) monitoring, opto-electrical (OE), and all-optical (AO) for neural stimulation, which are currently under investigation, whereas for in-body communications, we provide a nano-scale AO (NAO) concept. For each architecture, we discuss the main operation principles, the technology enablers, and research directions for their development. Finally, we highlight the necessity of designing an information-theoretic framework for the analysis and design of the physical (PHY) and medium access control (MAC) layers, which takes into account the channels~characteristics.
In this letter, we introduce a novel mixed terahertz (THz)-radio frequency (RF) wireless system architecture, which can be used for backhaul/fronthaul applications, and we deliver the theoretical framework for its performance assessment. In more deta il, after identifying the main design parameters and characteristics, we derive novel closed-form expressions for the end-to-end signal-to-noise ratio cumulative density function, the outage probability, and the symbol error rate, assuming that the system experiences the joint effect of fading and stochastic antenna misalignment. The derived analytical framework is verified through simulations and quantifies the systems effectiveness and reliability. Finally, our results contribute to the extraction of useful design guidelines.
This article discusses the basic system architecture for terahertz (THz) wireless links with bandwidths of more than 50 GHz into optical networks. New design principles and breakthrough technologies are required in order to demonstrate Tbps data-rate s at near zero-latency using the proposed system concept. Specifically, we present the concept of designing the baseband signal processing for both the optical and wireless link and using an end-to-end (E2E) error correction approach for the combined link. We provide two possible electro-optical baseband interface architectures, namely transparent optical-link and digital-link architectures, which are currently under investigation. THz wireless link requirements are given as well as the main principles and research directions for the development of a new generation of transceiver frontends, which will be capable of operating at ultra-high spectral efficiency by employing higher-order modulation schemes. Moreover, we discuss the need for developing a novel THz network information theory framework, which will take into account the channel characteristics and the nature of interference in the THz band. Finally, we highlight the role of pencil-beamforming (PBF), which is required in order to overcome the propagation losses, as well as the physical layer and medium access control challenges.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا