ﻻ يوجد ملخص باللغة العربية
This article discusses the fundamental architectures for optical wireless systems for biomedical applications. After summarizing the main applications and reporting their requirements, {we describe the characteristics of the transdermal and in-body optical channels as well as the challenges that they impose in the design of communication systems.} In more detail, we provide three possible architectures for transdermal communications, namely electro-optical (EO) monitoring, opto-electrical (OE), and all-optical (AO) for neural stimulation, which are currently under investigation, whereas for in-body communications, we provide a nano-scale AO (NAO) concept. For each architecture, we discuss the main operation principles, the technology enablers, and research directions for their development. Finally, we highlight the necessity of designing an information-theoretic framework for the analysis and design of the physical (PHY) and medium access control (MAC) layers, which takes into account the channels~characteristics.
This paper investigates the asymptotic BER performance of coherent optical wireless communication systems in Gamma-Gamma turbulence when applying the V-BLAST MIMO scheme. A new method is proposed to quantify the performance of the system and mathemat
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability
Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population densi
The proliferation of wireless devices in recent years has caused a spectrum shortage, which led the scientific community to explore the potential of using terahertz (THz) communications. However, THz systems suffer from severe path attenuation, block
As the standardization of 5G is being solidified, researchers are speculating what 6G will be. Integrating sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing to exploit the dense cell infrastructure of 5