ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodic capacity analysis of reconfigurable intelligent surface assisted wireless systems

110   0   0.0 ( 0 )
 نشر من قبل Alexandros-Apostolos Boulogeorgos
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the analytic framework for evaluating the ergodic capacity (EC) of the reconfigurable intelligent surface (RIS) assisted systems. Moreover, high-signal-to-noise-ratio and high-number of reflection units (RUs) approximations for the EC are provided. Finally, the special case in which the RIS is equipped with a single RU is investigated. Our analysis is verified through respective Monte Carlo simulations, which highlight the accuracy of the proposed framework.

قيم البحث

اقرأ أيضاً

This paper presents an analytical pathloss model for reconfigurable intelligent surface (RIS) assisted terahertz (THz) wireless systems. Specifically, the model accommodates both the THz link and the RIS particularities. Finally, we derive a closed-f orm expression that returns the optimal phase shifting of each RIS reflection unit. The derived pathloss model is validated through extensive electromagnetic simulations and is expected to play a key role in the design of RIS-assisted THz wireless systems.
In the recent years, the proliferation of wireless data traffic has led the scientific community to explore the use of higher unallocated frequency bands, such as the millimeter wave and terahertz (0.1-10 THz) bands. However, they are prone to blocka ges from obstacles laid in the transceiver path. To address this, in this work, the use of a reconfigurable-intelligent-surface (RIS) to restore the link between a transmitter (TX) and a receiver (RX), operating in the D-band (110-170 GHz) is investigated. The system performance is evaluated in terms of pathgain and capacity considering the RIS design parameters, the TX/RX-RIS distance and the elevation angles from the center of the RIS to the transceivers.
109 - Jiaqi Xu , Yuanwei Liu 2020
The reconfigurable intelligent surface (RIS) is one of the promising technology contributing to the next generation smart radio environment. The application scenarios include massive connectivity support, signal enhancement, and security protection. One crucial difficulty of analyzing the RIS-assisted networks is that the channel performance is sensitive to the change of user receiving direction. This paper tackles the problem by categorizing the RIS illuminated space into four categories: perfect alignment, coherent alignment, random alignment, and destructive alignment. These four categories cover all the possible phase alignment conditions that a user could experience within the overall $2$ pi solid angle of RIS-illuminated space. We perform analysis for each of these categories, deriving analytical expressions for the outage probability and diversity order. Simulation results are presented to confirm the effectiveness of the proposed analytical results.
By reconfiguring the propagation environment of electromagnetic waves artificially, reconfigurable intelligent surfaces (RISs) have been regarded as a promising and revolutionary hardware technology to improve the energy and spectrum efficiency of wi reless networks. In this paper, we study a RIS aided multiuser multiple-input single-output (MISO) wireless power transfer (WPT) system, where the transmitter is equipped with a constant-envelope analog beamformer. We formulate a novel problem to maximize the total received power of all the users by jointly optimizing the beamformer at transmitter and the phase shifts at the RISs, subject to the individual minimum received power constraints of users. We further solve the problem iteratively with a closed-form expression for each step. Numerical results show the performance gain of deploying RIS and the effectiveness of the proposed algorithm.
By reconfiguring the propagation environment of electromagnetic waves artificially, reconfigurable intelligent surfaces (RISs) have been regarded as a promising and revolutionary hardware technology to improve the energy and spectrum efficiency of wi reless networks. In this paper, we study a RIS aided multiuser multiple-input multiple-output (MIMO) wireless power transfer (WPT) system, where the transmitter is equipped with a constant-envelope analog beamformer. First, we maximize the total received power of the users by jointly optimizing the beamformer at transmitter and the phase-shifts at the RIS, and propose two alternating optimization based suboptimal solutions by leveraging the semidefinite relaxation (SDR) and the successive convex approximation (SCA) techniques respectively. Then, considering the user fairness, we formulate another problem to maximize the total received power subject to the users individual minimum received power constraints. A low complexity iterative algorithm based on both alternating direction method of multipliers (ADMM) and SCA techniques is proposed to solve this problem. In the case of multiple users, we further analyze the asymptotic performance as the number of RIS elements approaches infinity, and bound the performance loss caused by RIS phase quantization. Numerical results show the correctness of the analysis results and the effectiveness of the proposed algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا