ترغب بنشر مسار تعليمي؟ اضغط هنا

Future spacecraft will require a paradigm shift in the way the information is transmitted due to the continuous increase in the amount of data requiring space links. Current radiofrequency-based communication systems impose a bottleneck in the volume of data that can be transmitted back to Earth due to technological as well as regulatory reasons. Free-space optical communication has finally emerged as a key technology for solving the increasing bandwidth limitations for space communication while reducing the size, weight and power of satellite communication systems, and taking advantage of a license-free spectrum. In the last few years, many missions have demonstrated in orbit the fundamental principles of this technology proving to be ready for operational deployment, and we are now witnessing the emergence of an increasing number of projects oriented to exploit space laser communication (lasercom) in scientific and commercial applications. This chapter describes the basic principles and current trends of this new technology.
LEO-to-GEO intersatellite links using laser communications bring important benefits to greatly enhance applications such as downloading big amounts of data from LEO satellites by using the GEO satellite as a relay. By using this strategy, the total a vailability of the LEO satellite increases from less than 1% if the data is downloaded directly to the ground up to about 60% if the data is relayed through GEO. The main drawback of using a GEO relay is that link budget is much more difficult to close due to the much larger distance. However, this can be partially compensated by transmitting at a lower data rate, and still benefiting from the much-higher link availability when compared to LEO-to-ground downlinks, which additionally are more limited by the clouds than the relay option. After carrying out a feasibility study, NICT and the University of Tokyo started preparing a mission to demonstrate the technologies needed to perform these challenging lasercom links. Furthermore, to demonstrate the feasibility of this technique, an extremely-small satellite, i.e. a 6U CubeSat, will be used to achieve data rates as high as 10 Gbit/s between LEO and GEO. Some of the biggest challenges of this mission are the extremely low size, weight and power available in the CubeSat, the accurate pointing precision required for the lasercom link, and the difficulties of closing the link at such a high speed as 10 Gbit/s.
CubeSats are excellent platforms to rapidly perform simple space experiments. Several hundreds of CubeSats have already been successfully launched in the past few years and the number of announced launches grows every year. These platforms provide an easy access to space for universities and organizations which otherwise could not afford it. However, these spacecraft still rely on RF communications, where the spectrum is already crowded and cannot support the growing demand for data transmission to the ground. Lasercom holds the promise to be the solution to this problem, with a potential improvement of several orders of magnitude in the transmission capacity, while keeping a low size, weight and power. Between 2016 and 2017, The Keck Institute for Space Studies (KISS), a joint institute of the California Institute of Technology and the Jet Propulsion Laboratory, brought together a group of space scientists and lasercom engineers to address the current challenges that this technology faces, in order to enable it to compete with RF and eventually replace it when high-data rate is needed. After two one-week workshops, the working group started developing a report addressing three study cases: low Earth orbit, crosslinks and deep space. This paper presents the main points and conclusions of these KISS workshops.
The transmission and reception of polarized quantum-limited signals from space is of capital interest for a variety of fundamental-physics experiments and quantum-communication protocols. Specifically, Quantum Key Distribution (QKD) deals with the pr oblem of distributing unconditionally-secure cryptographic keys between two parties. Enabling this technology from space is a critical step for developing a truly-secure global communication network. The National Institute of Information and Communications Technology (NICT, Japan) performed the first successful measurement on the ground of a quantum-limited signal from a satellite in experiments carried out on early August in 2016. The SOTA (Small Optical TrAnsponder) lasercom terminal onboard the LEO satellite SOCRATES (Space Optical Communications Research Advanced Technology Satellite) was utilized for this purpose. Two non-orthogonally polarized signals in the ~800-nm band and modulated at 10 MHz were transmitted by SOTA and received in the single-photon regime by using a 1-m Cassegrain telescope on a ground station located in an urban area of Tokyo (Japan). In these experiments, after compensating the Doppler effect induced by the fast motion of the satellite, a QKD-enabling QBER (Quantum Bit Error Rate) below 5% was measured with estimated key rates in the order of several Kbit/s, proving the feasibility of quantum communications in a real scenario from space for the first time.
Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.
Recent rapid growth in the number of satellite-constellation programs for remote sensing and communications, thanks to the availability of small-size and low-cost satellites, provides impetus for high capacity laser communication (lasercom) in space. Quantum communication can enhance the overall performance of lasercom, and also enables intrinsically hack-proof secure communication known as Quantum Key Distribution (QKD). Here, we report a quantum communication experiment between a micro-satellite (48 kg and 50 cm cube) in a low earth orbit and a ground station with single-photon counters. Non-orthogonal polarization states were transmitted from the satellite at a 10-MHz repetition rate. On the ground, by post-processing the received quantum states at an average of 0.14 photons/pulse, clock data recovery and polarization reference-frame synchronization were successfully done even under remarkable Doppler shifts. A quantum bit error rate below 5% was measured, demonstrating the feasibility of quantum communication in a real scenario from space.
Based on the firm laws of physics rather than unproven foundations of mathematical complexity, quantum cryptography provides a radically different solution for encryption and promises unconditional security. Quantum cryptography systems are typically built between two nodes connected to each other through fiber optic. This chapter focuses on quantum cryptography systems operating over free-space optical channels as a cost-effective and license-free alternative to fiber optic counterparts. It provides an overview of the different parts of an experimental free-space quantum communication link developed in the Spanish National Research Council (Madrid, Spain).
The possibility of using optical communications in free-space as an improvement of current RF communication systems was analyzed in this Project. The particular case of a link Mars-Earth was studied and a link based in the future NASAs MLCD project, which is currently being developed, was designed. For this, an orbit simulator was programmed, evaluating the transfer orbit, analyzing the losses that occur in the transmission channel, using several atmospheric models, selecting the most adequate elements for the transmitter and the receiver, calculating the Doppler effect during the mission, and performing a budget link for the different orbit positions. From these results, the maximum bitrate through the MLCD mission was evaluated for the different astronomical observatories chosen as optical ground stations.
As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a signi ficant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receivers aperture, e.g. the 70-m antennas in the NASAs Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-based gamma-ray telescopes, known as Cherenkov telescopes, is suggested. These are optical telescopes designed to maximize the receivers aperture at a minimum cost with some relaxed requirements. As they are used in an array configuration and multiple identical units need to be built, each element of the telescope is designed to minimize its cost. Furthermore, the native array configuration would facilitate the joint operation of Cherenkov and lasercom telescopes. These telescopes offer very big apertures, ranging from several meters to almost 30 meters, which could greatly improve the performance of optical ground stations. The key elements of these telescopes have been studied applied to lasercom, reaching the conclusion that it could be an interesting strategy to include them in the future development of an optical deep-space network.
Beam wander caused by atmospheric turbulence can significantly degrade the performance of horizontal free-space quantum communication links. Classical beam wander correction techniques cannot be applied due to the stronger requirements of transmittin g single photons. One strategy to overcome this limitation consists in using a separate wavelength from that of the quantum signal to analyze the beam wander and use this information for its correction. For this strategy to work adequately, both wavelengths should be affected equally by atmospheric turbulence, i.e. no chromatic effects should be originated from beam wander. In this letter, a series of experiments are performed to prove that this is the case for {lambda} ~ 850 nm as the quantum signal and {lambda} ~ 1550 nm as the tracking signal of a quantum communication system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا