ﻻ يوجد ملخص باللغة العربية
Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.
This tutorial reviews the Holevo capacity limit as a universal tool to analyze the ultimate transmission rates in a variety of optical communication scenarios, ranging from conventional optically amplified fiber links to free-space communication with
Information transfer rates in optical communications may be dramatically increased by making use of spatially non-Gaussian states of light. Here we demonstrate the ability of deep neural networks to classify numerically-generated, noisy Laguerre-Gaus
Concerted efforts are underway to establish an infrastructure for a global quantum internet to realise a spectrum of quantum technologies. This will enable more precise sensors, secure communications, and faster data processing. Quantum communication
The study of free-space quantum communications requires tools from quantum information theory, optics and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement distribution through a free-space link, wher
Free-space communication links are severely affected by atmospheric turbulence, which causes degradation in the transmitted signal. One of the most common solutions to overcome this is to exploit diversity. In this approach, information is sent in pa