ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellite-to-ground quantum communication using a 50-kg-class micro-satellite

212   0   0.0 ( 0 )
 نشر من قبل Alberto Carrasco-Casado
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent rapid growth in the number of satellite-constellation programs for remote sensing and communications, thanks to the availability of small-size and low-cost satellites, provides impetus for high capacity laser communication (lasercom) in space. Quantum communication can enhance the overall performance of lasercom, and also enables intrinsically hack-proof secure communication known as Quantum Key Distribution (QKD). Here, we report a quantum communication experiment between a micro-satellite (48 kg and 50 cm cube) in a low earth orbit and a ground station with single-photon counters. Non-orthogonal polarization states were transmitted from the satellite at a 10-MHz repetition rate. On the ground, by post-processing the received quantum states at an average of 0.14 photons/pulse, clock data recovery and polarization reference-frame synchronization were successfully done even under remarkable Doppler shifts. A quantum bit error rate below 5% was measured, demonstrating the feasibility of quantum communication in a real scenario from space.

قيم البحث

اقرأ أيضاً

An arbitrary unknown quantum state cannot be precisely measured or perfectly replicated. However, quantum teleportation allows faithful transfer of unknown quantum states from one object to another over long distance, without physical travelling of t he object itself. Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distributed quantum computation. However, the previous teleportation experiments between distant locations were limited to a distance on the order of 100 kilometers, due to photon loss in optical fibres or terrestrial free-space channels. An outstanding open challenge for a global-scale quantum internet is to significantly extend the range for teleportation. A promising solution to this problem is exploiting satellite platform and space-based link, which can conveniently connect two remote points on the Earth with greatly reduced channel loss because most of the photons propagation path is in empty space. Here, we report the first quantum teleportation of independent single-photon qubits from a ground observatory to a low Earth orbit satellite - through an up-link channel - with a distance up to 1400 km. To optimize the link efficiency and overcome the atmospheric turbulence in the up-link, a series of techniques are developed, including a compact ultra-bright source of multi-photon entanglement, narrow beam divergence, high-bandwidth and high-accuracy acquiring, pointing, and tracking (APT). We demonstrate successful quantum teleportation for six input states in mutually unbiased bases with an average fidelity of 0.80+/-0.01, well above the classical limit. This work establishes the first ground-to-satellite up-link for faithful and ultra-long-distance quantum teleportation, an essential step toward global-scale quantum internet.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. In practice, the achievable distance for QKD has been limited to a few hundred kilo meters, due to the channel loss of fibers or terrestrial free space that exponentially reduced the photon rate. Satellite-based QKD promises to establish a global-scale quantum network by exploiting the negligible photon loss and decoherence in the empty out space. Here, we develop and launch a low-Earth-orbit satellite to implement decoy-state QKD with over kHz key rate from the satellite to ground over a distance up to 1200 km, which is up to 20 orders of magnitudes more efficient than that expected using an optical fiber (with 0.2 dB/km loss) of the same length. The establishment of a reliable and efficient space-to-ground link for faithful quantum state transmission constitutes a key milestone for global-scale quantum networks.
In this work, we study the effect of beam deviation angle at the reception side and calculate the theoretical demultiplexed collected energy for up to 15 modes, investigating the influence of the ratio between incoming beam size and fundamental HG mo des waist. We show this approach greatly enhances the collection efficiency, tolerating tip-tilt error of more than 3 times compared to a Gaussian beam alone. We also show that, depending on wait size, a trade-off between collection efficiency at small angles and maximum acceptance angle can be achieved.
Since the 1990s, there has been a dramatic interest in quantum communication. Free-space quantum communication is being developed to ultra-long distance quantum experiment, which requires higher electronics performance, such as time measurement preci sion, data-transfer rate, and system integration density. As part of the ground station of quantum experiment satellite that will be launched in 2016, we specifically designed a compact PCI-based multi-channel electronics system with high time-resolution, high data-transfer-rate. The electronics performance of this system was tested. The time bin size is 23.9ps and the time precision root-mean-square (RMS) is less than 24ps for 16 channels. The dead time is 30ns. The data transfer rate to local computer is up to 35 MBps, and the count rate is up to 30M/s. The system has been proven to perform well and operate stably through a test of free space quantum key distribution (QKD) experiment.
81 - Xuan Han , Hai-Lin Yong , Ping Xu 2019
Polarization maintenance is a key technology for free-space quantum communication. In this paper, we describe a polarization maintenance design of a transmitting antenna with an average polarization extinction ratio of 887 : 1 by a local test. We imp lemented a feasible polarization-compensation scheme for satellite motions that has a polarization fidelity more than 0.995. Finally, we distribute entanglement to a satellite from ground for the first time with a violation of Bell inequality by 2.312+-0.096.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا