ترغب بنشر مسار تعليمي؟ اضغط هنا

Chromatic effects in beam wander correction for free-space quantum communications

86   0   0.0 ( 0 )
 نشر من قبل Alberto Carrasco-Casado
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Beam wander caused by atmospheric turbulence can significantly degrade the performance of horizontal free-space quantum communication links. Classical beam wander correction techniques cannot be applied due to the stronger requirements of transmitting single photons. One strategy to overcome this limitation consists in using a separate wavelength from that of the quantum signal to analyze the beam wander and use this information for its correction. For this strategy to work adequately, both wavelengths should be affected equally by atmospheric turbulence, i.e. no chromatic effects should be originated from beam wander. In this letter, a series of experiments are performed to prove that this is the case for {lambda} ~ 850 nm as the quantum signal and {lambda} ~ 1550 nm as the tracking signal of a quantum communication system.



قيم البحث

اقرأ أيضاً

One of the major challenges for long range, high speed Free-Space Optical (FSO) communication is turbulence induced beam wander. Beam wander causes fluctuations in the received intensity as well as crosstalk in mode division multiplexed systems. Exis ting models for beam wander make use of probability distributions and long term averages and are not able to accurately model time-dependent intensity fluctuations such as deep fading, where the received intensity is too low to maintain reliable communication for an extended period of time. In this work we present an elegant new memory model which models the behaviour of beam wander induced intensity fluctuations with the unique capability to accurately simulate deep fading. This is invaluable for the development of optimised error correction coding and digital signal processing in order to improve the throughput and reliability of FSO systems.
Free-space communication links are severely affected by atmospheric turbulence, which causes degradation in the transmitted signal. One of the most common solutions to overcome this is to exploit diversity. In this approach, information is sent in pa rallel using two or more transmitters that are spatially separated, with each beam therefore experiencing different atmospheric turbulence, lowering the probability of a receive error. In this work we propose and experimentally demonstrate a generalization of diversity based on spatial modes of light, which we have termed $textit{modal diversity}$. We remove the need for a physical separation of the transmitters by exploiting the fact that spatial modes of light experience different perturbations, even when travelling along the same path. For this proof-of-principle we selected modes from the Hermite-Gaussian and Laguerre-Gaussian basis sets and demonstrate an improvement in Bit Error Rate by up to 54%. We outline that modal diversity enables physically compact and longer distance free space optical links without increasing the total transmit power.
A global network of optical atomic clocks will enable unprecedented measurement precision in fields including tests of fundamental physics, dark matter searches, geodesy, and navigation. Free-space laser links through the turbulent atmosphere are nee ded to fully exploit this global network, by enabling comparisons to airborne and spaceborne clocks. We demonstrate frequency transfer over a 2.4 km atmospheric link with turbulence similar to that of a ground-to-space link, achieving a fractional frequency stability of 6.1E-21 in 300 s of integration time. We also show that clock comparison between ground and low Earth orbit will be limited by the stability of the clocks themselves after only a few seconds of integration. This significantly advances the technologies needed to realize a global timescale network of optical atomic clocks.
Tracking capabilities in Time Projection Chambers (TPCs) are strongly dictated by the homogeneity of the drift field. Ion back-flow in various gas detectors, mainly induced by the secondary ionization processes during amplification, has long been kno wn as a source of drift field distortion. Here, we report on beam-induced space-charge effects from the primary ionization process in the drift region in low-energy nuclear physics experiment with Active Target Time Projection Chamber (AT-TPC). A qualitative explanation of the observed effects is provided using detailed electron transport simulations. As ion mobility is a crucial factor in the space-charge effects, the need for a careful optimization of gas properties is highlighted. The impact of track distortion on tracking algorithm performance is also discussed.
In this paper, we propose an adaptive beam that adapts its divergence angle according to the receiver aperture diameter and the communication distance to improve the received power and ease the alignment between the communicating optical transceivers in a free-space optical communications (FSOC) system for high-speed trains (HSTs). We compare the received power, signal-to-noise ratio, bit error rate, and the maximum communication distance of the proposed adaptive beam with a beam that uses a fixed divergence angle of 1 mrad. The proposed adaptive beam yields a higher received power with an increase of 33 dB in average over the fixed-divergence beam under varying visibility conditions and distance. Moreover, the proposed adaptive divergence angle extends the communication distance of a FSOC system for HSTs to about three times under different visibility conditions as compared to a fixed divergence beam. We also propose a new ground transceiver placement that places the ground transceivers of a FSOC system for HSTs on gantries placed above the train passage instead of placing them next to track. The proposed transceiver placement provides a received-power increase of 3.8 dB in average over the conventional placement of ground-station transceivers next to the track.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا