ترغب بنشر مسار تعليمي؟ اضغط هنا

We use data at 131, 171, and 304 A from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50 degrees. Half of the flares were associated with coronal mass ejections (CMEs). The goal of our survey is to assess the frequency of hot flux ropes in large flares irrespective of their formation time relative to the onset of eruptions. The flux ropes were identified in 131 A images using morphological criteria and their high temperatures were confirmed by their absence in the cooler 171 and 304 A passbands. We found hot flux ropes in 45 of our events (32% of the flares); 11 of them were associated with confined flares while the remaining 34 were associated with eruptive flares. Therefore almost half (49%) of the eruptive events involved a hot flux rope configuration. The use of supplementary Hinode X-Ray Telescope (XRT) data indicates that these percentages should be considered as lower limits of the actual rates of occurrence of hot flux ropes in large flares.
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earths magnetosphere. Reconnection occurs most efficiently when the solar w ind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remains elusive. Here we report how, by combining a statistically robust helicity rule for a CMEs solar origin with a simplified flux rope topology the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.
Coronal mass ejections (CMEs) are the main driver of Space Weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary mediu m. However, single view-point observations require many assumptions to model the development of the features of CMEs, the most common hypotheses were those of radial propagation and self-similar expansion. The use of different view-points shows that at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now been confirmed to exist are; over-expansion, and/or rotation along the propagation axis. Understanding of the 3D development and evolution of the CME features will help to establish the connection between remote and in-situ observations, and hence help forecast Space Weather. We present an analysis of the morphological and kinematical evolution of a STEREO B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by SOHO, STEREO and SDO missions, and in-situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated to changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We propose, also, a method to investigate the change of the CME Tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow infer ICME orientation.
We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma beta transition. Specifically, we consider a strong internal magnetic field and an explosive fast star t, such that the plasma beta is significantly lower in the FR than the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g. from space weather simulations like Enlil) of a `pancake shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR can demarcate a boundary layer where there is a sharp transition in the plasma beta. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region which maintains a quasi-cylindrical structure. Quantitatively, we investigate a locus of points where the kinetic energy density of the relative inflow field is equal to the energy density of the transverse magnetic field (i.e. effective tension force). The simulation provides compelling evidence that at all heliocentric distances the distribution of toroidal magnetic flux away from the FR axis is not linear; with 80% of the toroidal flux occurring within 40% of the distance from the FR axis. Thus our simulation displays evidence that the competing ideas of a pancaking structure observed remotely can coexist with a quasi-cylindrical magnetic structure seen in situ.
Using combined STEREO-A and STEREO-B EUVI, COR1 and COR2 data, we derive deprojected CME kinematics and CME `true mass evolutions for a sample of 25 events that occurred during December 2007 to April 2011. We develop a fitting function to describe th e CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10Rs to 15Rs and is assumed to mostly contribute up to 20Rs. The mass increase ranges from 2% to 6% per Rs and, is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the `true mass value for very low coronal heights (< 3Rs). Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona (< 3Rs). The derived CME kinetic energies range between 1-66*10^23 J, and the forces range between 2.2-510*10^14 N.
Magnetic flux ropes play a central role in the physics of Coronal Mass Ejections (CMEs). Although a flux rope topology is inferred for the majority of coronagraphic observations of CMEs, a heated debate rages on whether the flux ropes pre-exist or wh ether they are formed on-the-fly during the eruption. Here, we present a detailed analysis of Extreme Ultraviolet observations of the formation of a flux rope during a confined flare followed about seven hours later by the ejection of the flux rope and an eruptive flare. The two flares occurred during 18 and 19 July 2012. The second event unleashed a fast (> 1000 km/s) CME. We present the first direct evidence of a fast CME driven by the prior formation and destabilization of a coronal magnetic flux rope formed during the confined flare on 18 July.
Studying the evolution of magnetic clouds entrained in coronal mass ejections using in-situ data is a difficult task since only a limited number of observational points is available at large heliocentric distances. Remote sensing observations can, ho wever, provide important information for events close to the Sun. In this work we estimate the flux rope orientation first in the close vicinity of the Sun (2-20 Rs) using forward modeling of STEREO/SECCHI and SOHO/LASCO coronagraph images of coronal mass ejections and then in-situ using Grad-Shafranov reconstruction of the magnetic cloud. Thus, we are able to measure changes in the orientation of the erupted flux ropes as they propagate from the Sun to 1 AU. We present both techniques and use them to study 15 magnetic clouds observed during the minimum following Solar Cycle 23 and the rise of Solar Cycle 24. This is the first multievent study to compare the three-dimensional parameters of CMEs from imaging and in-situ reconstructions. The results of our analysis confirm earlier studies showing that the flux ropes tend to deflect towards the solar equatorial plane. We also find evidence of rotation on their travel from the Sun to 1 AU. In contrast to past studies, our method allows one to deduce the evolution of the three-dimensional orientation of individual flux ropes rather than on a statistical basis.
The study of fast, eruptive events in the low solar corona is one of the science objectives of the Atmospheric Imaging Assembly (AIA) imagers on the recently launched Solar Dynamics Observatory (SDO), which take full disk images in ten wavelengths wi th arcsecond resolution and 12 sec cadence. We study with AIA the formation of an impulsive coronal mass ejection (CME) which occurred on June 13, 2010 and was associated with an M1.0 class flare. Specifically, we analyze the formation of the CME EUV bubble and its initial dynamics and thermal evolution in the low corona using AIA images in three wavelengths (171, 193 and 211 A). We derive the first ultra-high cadence measurements of the temporal evolution of the CME bubble aspect ratio (=bubble-height/bubble-radius). Our main result is that the CME formation undergoes three phases: it starts with a slow self-similar expansion followed by a fast but short-lived (~ 70 sec) period of strong lateral over-expansion which essentially creates the CME. Then the CME undergoes another phase of self-similar expansion until it exits the AIA field of view. During the studied interval, the CME height-time profile shows a strong, short-lived, acceleration followed by deceleration. The lateral overexpansion phase coincides with the deceleration phase. The impulsive flare heating and CME acceleration are closely coupled. However, the lateral overexpansion of the CME occurs during the declining phase and is therefore not linked to flare reconnection. In addition, the multi-thermal analysis of the bubble does not show significant evidence of temperature change.
One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was $approx 45^circ$. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.
We discuss features of coronal mass ejections (CMEs) that are specific to heliospheric observations at large elongation angles. Our analysis is focused on a series of two eruptions that occurred on 2007 January 24-25, which were tracked by the Helios pheric Imagers (HIs) onboard STEREO. Using a three-dimensional (3-D) magneto-hydrodynamic simulation of these ejections with the Space Weather Modeling Framework (SWMF), we illustrate how the combination of the 3-D nature of CMEs, solar rotation, and geometry associated with the Thomson sphere results in complex effects in the brightness observed by the HIs. Our results demonstrate that these effects make any in-depth analysis of CME observations without 3-D simulations challenging. In particular, the association of bright features seen by the HIs with fronts of CME-driven shocks is far from trivial. In this Letter, we argue that, on 2007 January 26, the HIs observed not only two CMEs, but also a dense corotating stream compressed by the CME-driven shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا