ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial Architecture

65   0   0.0 ( 0 )
 نشر من قبل Neel P. Savani
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earths magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remains elusive. Here we report how, by combining a statistically robust helicity rule for a CMEs solar origin with a simplified flux rope topology the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.

قيم البحث

اقرأ أيضاً

We identify coronal mass ejections (CMEs) associated with magnetic clouds (MCs) observed near Earth by the Wind spacecraft from 2008 to mid-2012, a time period when the two STEREO spacecraft were well positioned to study Earth-directed CMEs. We find 31 out of 48 Wind MCs during this period can be clearly connected with a CME that is trackable in STEREO imagery all the way from the Sun to near 1 AU. For these events, we perform full 3-D reconstructions of the CME structure and kinematics, assuming a flux rope morphology for the CME shape, considering the full complement of STEREO and SOHO imaging constraints. We find that the flux rope orientations and sizes inferred from imaging are not well correlated with MC orientations and sizes inferred from the Wind data. However, velocities within the MC region are reproduced reasonably well by the image-based reconstruction. Our kinematic measurements are used to provide simple prescriptions for predicting CME arrival times at Earth, provided for a range of distances from the Sun where CME velocity measurements might be made. Finally, we discuss the differences in the morphology and kinematics of CME flux ropes associated with different surface phenomena (flares, filament eruptions, or no surface activity).
Interplanetary coronal mass ejections (ICMEs) often consist of a shock wave, sheath region, and ejecta region. The ejecta regions are divided into two broad classes: magnetic clouds (MC) that exhibit the characteristics of magnetic flux ropes and non -magnetic clouds (NMC) that do not. As CMEs result from eruption of magnetic flux ropes, it is important to answer why NMCs do not have the flux rope features. One claims that NMCs lose their original flux rope features due to the interactions between ICMEs or ICMEs and other large scale structures during their transit in the heliosphere. The other attributes this phenomenon to the geometric selection effect, i.e., when an ICME has its nose (flank, including leg and non-leg flanks) pass through the observing spacecraft, the MC (NMC) features will be detected along the spacecraft trajectory within the ejecta. In this Letter, we examine which explanation is more reasonable through the geometric properties of ICMEs. If the selection effect leads to different ejecta types, MCs should have narrower sheath region compared to NMCs from the statistical point of view, which is confirmed by our statistics. Besides, we find that NMCs have the similar size in solar cycles 23 and 24, and NMCs are smaller than MCs in cycle 23 but larger than MCs in cycle 24. This suggests that most NMCs have their leg flank pass through the spacecraft. Our geometric analyses support that all ICMEs should have a magnetic flux rope structure near 1 AU.
A sample of isolated Earth-impacting ICMEs that occurred in the period January 2008 to August 2014 is analysed in order to study in detail the ICME in situ signatures with respect to the type of filament eruption related to the corresponding CME. For Earth-directed CMEs, a kinematical study was performed using the STEREO-A, B COR1 and COR2 coronagraphs and the Heliospheric Imagers HI1. Based on the extrapolated CME kinematics, we identified interacting CMEs, which were excluded from further analysis. Applying this approach, a set of 31 isolated Earth-impacting CMEs was unambiguously identified and related to the in situ measurements recorded by the Wind spacecraft. We classified the events into subsets with respect to the CME source location as well as with respect to the type of the associated filament eruption. Hence, the events are divided into three subsamples: active region (AR) CMEs, disappearing filament (DSF) CMEs, and stealthy CMEs. The related three groups of ICMEs were further divided into two subsets: magnetic obstacle (MO) events (out of which four were stealthy), covering ICMEs that at least partly expose characteristics of flux ropes, and ejecta (EJ) events, not showing such characteristics. In the next step, MO-events were analysed in more detail, considering the magnetic field strengths and the plasma characteristics in three different segments of the ICMEs, defined as the turbulent sheath (TS), the frontal region (FR), and the MO itself. The analysis revealed various well-defined correlations for AR, DSF, and stealthy ICMEs, which we interpreted considering basic physical concepts. Our results support the hypothesis that ICMEs show different signatures depending on the in situ spacecraft trajectory, in terms of apex versus flank hits.
We report on an observationally constrained analytical model, the INterplanetary Flux ROpe Simulator (INFROS), for predicting the magnetic-field vectors of coronal mass ejections (CMEs) in the interplanetary medium. The main architecture of INFROS in volves using the near-Sun flux rope properties obtained from the observational parameters that are evolved through the model in order to estimate the magnetic field vectors of interplanetary CMEs (ICMEs) at any heliocentric distance. We have formulated a new approach in INFROS to incorporate the expanding nature and the time-varying axial magnetic field-strength of the flux rope during its passage over the spacecraft. As a proof of concept, we present the case study of an Earth-impacting CME which occurred on 2013 April 11. Using the near-Sun properties of the CME flux rope, we have estimated the magnetic vectors of the ICME as intersected by the spacecraft at 1 AU. The predicted magnetic field profiles of the ICME show good agreement with those observed by the in-situ spacecraft. Importantly, the maximum strength (10.5 $pm$ 2.5 nT) of the southward component of the magnetic field (Bz) obtained from the model prediction, is in agreement with the observed value (11 nT). Although our model does not include the prediction of the ICME plasma parameters, as a first order approximation it shows promising results in forecasting of Bz in near real time which is critical for predicting the severity of the associated geomagnetic storms. This could prove to be a simple space-weather forecasting tool compared to the time-consuming and computationally expensive MHD models.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerf ul ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا