ترغب بنشر مسار تعليمي؟ اضغط هنا

Inner Heliospheric Evolution of a Stealth CME Derived From Multi-view Imaging and Multipoint In--situ observations: I. Propagation to 1 AU

71   0   0.0 ( 0 )
 نشر من قبل Neel P. Savani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronal mass ejections (CMEs) are the main driver of Space Weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary medium. However, single view-point observations require many assumptions to model the development of the features of CMEs, the most common hypotheses were those of radial propagation and self-similar expansion. The use of different view-points shows that at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now been confirmed to exist are; over-expansion, and/or rotation along the propagation axis. Understanding of the 3D development and evolution of the CME features will help to establish the connection between remote and in-situ observations, and hence help forecast Space Weather. We present an analysis of the morphological and kinematical evolution of a STEREO B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by SOHO, STEREO and SDO missions, and in-situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated to changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We propose, also, a method to investigate the change of the CME Tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow infer ICME orientation.


قيم البحث

اقرأ أيضاً

Using combined STEREO-A and STEREO-B EUVI, COR1 and COR2 data, we derive deprojected CME kinematics and CME `true mass evolutions for a sample of 25 events that occurred during December 2007 to April 2011. We develop a fitting function to describe th e CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10Rs to 15Rs and is assumed to mostly contribute up to 20Rs. The mass increase ranges from 2% to 6% per Rs and, is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the `true mass value for very low coronal heights (< 3Rs). Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona (< 3Rs). The derived CME kinetic energies range between 1-66*10^23 J, and the forces range between 2.2-510*10^14 N.
445 - T. Rollett , C. Moestl , M. Temmer 2014
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CMEs propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.
The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, th e `solar wind laboratory is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the Propagation Tool that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.
Stealth coronal mass ejection (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic config uration and eruption dynamics is particularly problematic. In this manuscript, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information (OSPREI) modelling suite to evaluate its early evolution and forward-model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 AU. We compare our hindcast prediction with in-situ measurements and a set of flux rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft crossing location, and magnetic field profiles. This work represents a first step towards reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow, streamer-blowout events.
We determine the 3D geometry and deprojected mass of 29 well-observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined STEREO-SOHO white-light data. From the geometry parameters we calculate the volume of the CME for the magnetic ejecta (flux-rope type geometry) and sheath structure (shell-like geometry resembling the (I)CME frontal rim). Working under the assumption that the CME mass is roughly equally distributed within a specific volume, we expand the CME self-similarly and calculate the CME density for distances close to the Sun (15-30 Rs) and at 1AU. Specific trends are derived comparing calculated and in-situ measured proton densities at 1AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: i) a moderate correlation for the magnetic structure having a mass that stays rather constant (~0.56-0.59), and ii) a weak correlation for the sheath density (~0.26) by assuming the sheath region is an extra mass - as expected for a mass pile-up process - that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in-situ measured sheath density and the solar wind density (~ -0.73) and solar wind speed (~0.56) as measured 24 hours ahead of the arrival of the disturbance. This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material could be piled up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا