ترغب بنشر مسار تعليمي؟ اضغط هنا

How Common are Hot Magnetic Flux Ropes in the Low Solar Corona? A Statistical Study of EUV Observations

403   0   0.0 ( 0 )
 نشر من قبل Alexander Nindos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use data at 131, 171, and 304 A from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50 degrees. Half of the flares were associated with coronal mass ejections (CMEs). The goal of our survey is to assess the frequency of hot flux ropes in large flares irrespective of their formation time relative to the onset of eruptions. The flux ropes were identified in 131 A images using morphological criteria and their high temperatures were confirmed by their absence in the cooler 171 and 304 A passbands. We found hot flux ropes in 45 of our events (32% of the flares); 11 of them were associated with confined flares while the remaining 34 were associated with eruptive flares. Therefore almost half (49%) of the eruptive events involved a hot flux rope configuration. The use of supplementary Hinode X-Ray Telescope (XRT) data indicates that these percentages should be considered as lower limits of the actual rates of occurrence of hot flux ropes in large flares.

قيم البحث

اقرأ أيضاً

We investigate the formation times of eruptive magnetic flux ropes relative to the onset of solar eruptions, which is important for constraining models of coronal mass ejection (CME) initiation. We inspected uninterrupted sequences of 131 AA images t hat spanned more than eight hours and were obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) to identify the formation times of hot flux ropes that erupted in CMEs from locations close to the limb. The appearance of the flux ropes as well as their evolution toward eruptions were determined using morphological criteria. Two-thirds (20/30) of the flux ropes were formed well before the onset of the eruption (from 51 minutes to more than eight hours), and their formation was associated with the occurrence of a confined flare. We also found four events with preexisting hot flux ropes whose formations occurred a matter of minutes (from three to 39) prior to the eruptions without any association with distinct confined flare activity. Six flux ropes were formed once the eruptions were underway. However, in three of them, prominence material could be seen in 131 AA images, which may indicate the presence of preexisting flux ropes that were not hot. The formation patterns of the last three groups of hot flux ropes did not show significant differences. For the whole population of events, the mean and median values of the time difference between the onset of the eruptive flare and the appearance of the hot flux rope were 151 and 98 minutes, respectively. Our results provide, on average, indirect support for CME models that involve preexisting flux ropes; on the other hand, for a third of the events, models in which the ejected flux rope is formed during the eruption appear more appropriate.
Parkers magnetostatic theorem extended to astrophysical magnetofluids with large magnetic Reynolds number supports ceaseless regeneration of current sheets and hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is p ossible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux-rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process, including onset and ascent of the rope, reconnection locations and the associated topology of the magnetic field lines, agrees with observations, and thus substantiates physical realisability of the advocated mechanism.
Magnetic flux ropes (MFRs) are thought to be the central structure of solar eruptions, and their ideal MHD instabilities can trigger the eruption. Here we performed a study of all the MFR configurations that lead to major solar flares, either eruptiv e or confined, from 2011 to 2017 near the solar disk center. The coronal magnetic field is reconstructed from observed magnetograms, and based on magnetic twist distribution, we identified the MFR, which is defined as a coherent group of magnetic field lines winding an axis with more than one turn. It is found that 90% of the events possess pre-flare MFRs, and their three-dimensional structures are much more complex in details than theoretical MFR models. We further constructed a diagram based on two parameters, the magnetic twist number which controls the kink instability (KI), and the decay index which controls the torus instability (TI). It clearly shows lower limits for TI and KI thresholds, which are $n_{rm crit} = 1.3$ and $|T_w|_{rm crit} = 2$, respectively, as all the events above $n_{rm crit}$ and nearly 90% of the events above $|T_w|_{rm crit}$ erupted. Furthermore, by such criterion, over 70% of the events can be discriminated between eruptive and confined flares, and KI seems to play a nearly equally important role as TI in discriminating between the two types of flare. There are more than half of events with both parameters below the lower limits, and 29% are eruptive. These events might be triggered by magnetic reconnection rather than MHD instabilities.
Coronal magnetic flux ropes are generally considered to be the core structure of large-scale solar eruptions. Recent observations found that solar eruptions could be initiated by a sequence of flux feeding, during which chromospheric fibrils rise upw ard from below, and merge with a pre-existing prominence. Further theoretical study has confirmed that the flux feeding mechanism is efficient in causing the eruption of flux ropes that are wrapped by bald patch separatrix surfaces. But it is unclear how flux feeding influences coronal flux ropes that are wrapped by hyperbolic flux tubes (HFT), and whether it is able to cause the flux-rope eruption. In this paper, we use a 2.5-dimensional magnetohydrodynamic model to simulate the flux feeding processes in HFT configurations. It is found that flux feeding injects axial magnetic flux into the flux rope, whereas the poloidal flux of the rope is reduced after flux feeding. Flux feeding is able to cause the flux rope to erupt, provided that the injected axial flux is large enough so that the critical axial flux of the rope is reached. Otherwise, the flux rope system evolves to a stable equilibrium state after flux feeding, which might be even farther away from the onset of the eruption, indicating that flux feeding could stabilize the rope system with the HFT configuration in this circumstance.
Flux ropes are twisted magnetic structures, which can be detected by in situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope population. As such, are there different population s of flux ropes? The answer is positive, and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in situ data for the four lists have been fitted with the same cylindrical force-free field model, which provides an estimation of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a large dynamic range, we go beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations over the radius range. By doing so, we find that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimate the expected flux-rope frequency per year at 1 AU. We find that the predicted numbers are similar to the frequencies of MCs observed in situ. However, we also find that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of those small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا