ترغب بنشر مسار تعليمي؟ اضغط هنا

38 - G. Scelza , A. Stabile 2014
In this paper we present a brief discussion on the salient points of the computational analysis that are at the basis of the paper cite{StSc}. The computational and data analysis have been made with the software Mathematica$^circledR$ and presented at Mathematica Italia User Group Meeting 2011.
We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the nanobeams produces an abrupt MIT and the individual roles of thermal and non-thermal effects in driving the transition are studied. Transport measurements at temperatures ($T$) far below the critical temperature ($T_c$) of MIT, in several nanoscale vanadium oxide devices, show that both $T$ and electric field play distinctly separate, but critical roles in inducing the MIT. Specifically, at $T << T_c$ electric field dominates the MIT through an avalanche-type process, whereas thermal effects become progressively critical as $T$ approaches $T_c$.
The weak field limit of scalar tensor theories of gravity is discussed in view of conformal transformations. Specifically, we consider how physical quantities, like gravitational potentials derived in the Newtonian approximation for the same scalar-t ensor theory, behave in the Jordan and in the Einstein frame. The approach allows to discriminate features that are invariant under conformal transformations and gives contributions in the debate of selecting the true physical frame. As a particular example, the case of $f(R)$ gravity is considered.
The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.
The Electron Cloud is an undesirable physical phenomenon which might produce single and multi-bunch instability, tune shift, increase of pressure ultimately limiting the performance of particle accelerators. We report our results on the analytical study of the electron dynamics.
NbSe3 exhibits remarkable anisotropy in most of its physical properties and has been a model system for studies of quasi-one-dimensional charge-density-wave (CDW) phenomena. Herein, we report the synthesis, characterization, and electrical transport of single-crystalline NbSe3 nanoribbons by a facile one-step vapour transport process involving the transport of selenium powder onto a niobium foil substrate. Our investigations aid the understanding of the CDW nature of NbSe3 and the growth process of the material. They also indicate that NbSe3 nanoribbons have enhanced CDW properties compared to those of the bulk phase due to size confinement effects, thus expanding the search for new mesoscopic phenomena at the nanoscale level. Single nanoribbon measurements on the electrical resistance as a function of temperature show charge-density wave transitions at 59 K and 141 K. We also demonstrate significant enhancement in the depinning effect and sliding regimes mainly attributed to finite size effects.
Electron cloud effects have recognized as as one of the most serious bottleneck for reaching design performances in presently running and proposed future storage rings. The analysis of these effects is usually performed with very time consuming simul ation codes. An alternative analytic approach, based on a cubic map model for the bunch-to-bunch evolution of the electron cloud density, could be useful to determine regions in parameters space compatible with safe machine operations. In this communication we derive a simple approximate formula relating the linear coefficient in the electron cloud density map to the parameters relevant for the electron cloud evolution with particular reference to the LHC dipoles.
The Electron Cloud, an undesirable physical phenomena in the accelerators, develops quickly as photons striking the vacuum chamberwall knock out electrons that are then accelerated by the beam, gain energy, and strike the chamber again, producing mor e electrons. The interaction between the electron cloud and a beam leads to the electron cloud effects such as single- and multi-bunch instability, tune shift, increase of pressure and particularly can limit the ability of recently build or planned accelerators to reach their design parameters. We report a principal results about the analytical study to understanding a such dynamics of electrons.
The evolution of the electron density during electron cloud formation can be reproduced using a bunch-to-bunch iterative map formalism. The reliability of this formalism has been proved for RHIC [1] and LHC [2]. The linear coefficient has a good theo retical framework, while quadratic coefficient has been proved only by fitting the results of compute-intensive electron cloud simulations. In this communication we derive an analytic expression for the quadratic map coefficient. The comparison of the theoretical estimate with the simulations results shows a good agreement for a wide range of bunch population.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا