ﻻ يوجد ملخص باللغة العربية
The Electron Cloud, an undesirable physical phenomena in the accelerators, develops quickly as photons striking the vacuum chamberwall knock out electrons that are then accelerated by the beam, gain energy, and strike the chamber again, producing more electrons. The interaction between the electron cloud and a beam leads to the electron cloud effects such as single- and multi-bunch instability, tune shift, increase of pressure and particularly can limit the ability of recently build or planned accelerators to reach their design parameters. We report a principal results about the analytical study to understanding a such dynamics of electrons.
Electron cloud effects have recognized as as one of the most serious bottleneck for reaching design performances in presently running and proposed future storage rings. The analysis of these effects is usually performed with very time consuming simul
The Electron Cloud is an undesirable physical phenomenon which might produce single and multi-bunch instability, tune shift, increase of pressure ultimately limiting the performance of particle accelerators. We report our results on the analytical study of the electron dynamics.
Earlier comparisons of galatic rotation curves with MOND have arrived at the conclusion that the parameter a_0 lies within ~20% of cH_0/2pi, where c is the velocity of light and H_0 is the Hubble constant. It is proposed here that, for this value of
Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and b
The evolution of the electron density during electron cloud formation can be reproduced using a bunch-to-bunch iterative map formalism. The reliability of this formalism has been proved for RHIC [1] and LHC [2]. The linear coefficient has a good theo