ﻻ يوجد ملخص باللغة العربية
The weak field limit of scalar tensor theories of gravity is discussed in view of conformal transformations. Specifically, we consider how physical quantities, like gravitational potentials derived in the Newtonian approximation for the same scalar-tensor theory, behave in the Jordan and in the Einstein frame. The approach allows to discriminate features that are invariant under conformal transformations and gives contributions in the debate of selecting the true physical frame. As a particular example, the case of $f(R)$ gravity is considered.
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally eithe
This paper provides an extended exploration of the inverse-chirp gravitational-wave signals from stellar collapse in massive scalar-tensor gravity reported in [Phys. Rev. Lett. {bf 119}, 201103]. We systematically explore the parameter space that cha
In this paper we investigate the asymptotic dynamics of inflationary cosmological models that are based in scalar-tensor theories of gravity. Our main aim is to explore the global structure of the phase space in the framework of single-field inflatio
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a