ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Notes on the Numerical Analysis of Galactic Rotation Curves

54   0   0.0 ( 0 )
 نشر من قبل Arturo Stabile
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a brief discussion on the salient points of the computational analysis that are at the basis of the paper cite{StSc}. The computational and data analysis have been made with the software Mathematica$^circledR$ and presented at Mathematica Italia User Group Meeting 2011.


قيم البحث

اقرأ أيضاً

Cosmological simulations of structure formation are invaluable to study the evolution of the Universe and the development of galaxies in it successfully reproducing many observations in the context of the cosmological paradigm $Lambda$CDM. However, t here are remarkable discrepancies with observations that are a matter of debate. One of the most recently reported is the diversity of shapes in the rotation curves of dwarf galaxies in the local Universe which is in contrast to the apparent homogeneity of rotation curves in cosmological hydrodynamic simulations. Previous studies on similar problems have shown that sometimes can be alleviated by accounting for the impact of observational effects in the comparison. For this reason, in this work we present a set of controlled experiments to measure the impact that some systematic effects, associated with modeling the observation process in a realistic way, have on the diversity of synthetic rotation curves. Our results demonstrate that factors such as spectral power, spatial resolution and inclination angle, can naturally induce noticeable fluctuations on the shape of the rotation curves, reproducing up to $47%$ of the diversity reported in the observations. This is remarkable, especially considering that we limited the sample to highly-symmetric disks simulated in isolation. This shows that a more realistic modeling of synthetic rotation curves may alleviate the reported tension between simulations and observations, without posing a challenge to the standard cosmological model of cold dark matter.
48 - Aaron A. Dutton 2019
The phenomenological basis for Modified Newtonian Dynamics (MOND) is the radial-acceleration-relation (RAR) between the observed acceleration, $a=V^2_{rot}(r)/r$, and the acceleration accounted for by the observed baryons (stars and cold gas), $a_{ba r}=V_{bar}^2(r)/r$. We show that the RAR arises naturally in the NIHAO sample of 89 high-resolution LCDM cosmological galaxy formation simulations. The overall scatter from NIHAO is just 0.079 dex, consistent with observational constraints. However, we show that the scatter depends on stellar mass. At high masses ($10^9 <M_{star} <10^{11}$ Msun) the simulated scatter is just $simeq 0.04$ dex, increasing to $simeq 0.11$ dex at low masses ($10^7 < M_{star} <10^{9}$Msun). Observations show a similar dependence for the intrinsic scatter. At high masses the intrinsic scatter is consistent with the zero scatter assumed by MOND, but at low masses the intrinsic scatter is non-zero, strongly disfavoring MOND. Applying MOND to our simulations yields remarkably good fits to most of the circular velocity profiles. In cases of mild disagreement the stellar mass-to-light ratio and/or distance can be tuned to yield acceptable fits, as is often done in observational mass models. In dwarf galaxies with $M_{star}sim10^6$Msun MOND breaks down, predicting lower accelerations than observed and in our LCDM simulations. The assumptions that MOND is based on (e.g., asymptotically flat rotation curves, zero intrinsic scatter in the RAR), are approximately, but not exactly, true in LCDM. Thus if one wishes to go beyond Newtonian dynamics there is more freedom in the RAR than assumed by MOND.
We investigate the braneworld model with induced gravity to clarify the role of the cross-over length scale ell in the possible explanation of the dark-matter phenomenon in astrophysics and in cosmology. Observations of the 21 cm line from neutral hy drogen clouds in spiral galaxies reveal that the rotational velocities remain nearly constant at a value v_c ~ 10^{-3}--10^{-4} in the units of the speed of light in the region of the galactic halo. Using the smallness of v_c, we develop a perturbative scheme for reconstructing the metric in a galactic halo. In the leading order of expansion in v_c, at the distances r gtrsim v_c ell, our result reproduces that obtained in the Randall-Sundrum braneworld model. This inequality is satisfied in a real spiral galaxy such as our Milky Way for distances r ~ 3 kpc, at which the rotational velocity curve becomes flat, v_c ~ 7 times 10^{-4}, if ell lesssim 2 Mpc. The gravitational situation in this case can be approximately described by the Einstein equations with the so-called Weyl fluid playing the role of dark matter. In the region near the gravitating body, we derive a closed system of equations for static spherically symmetric situation under the approximation of zero anisotropic stress of the Weyl fluid. We find the Schwarzschild metric to be an approximate vacuum solution of these equations at distances r lesssim (r_g ell^2)^{1/3}. The value ell lesssim 2 Mpc complies well with the solar-system tests. At the same time, in cosmology, a low-density braneworld with ell of this order of magnitude can mimic the expansion properties of the high-density LCDM (lambda + cold dark matter) universe at late times. Combined observations of galactic rotation curves and gravitational lensing can possibly discriminate between the higher-dimensional effects and dark matter.
We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a constant density core. The cusp vs core issue is thus better characterized as an inner mass deficit problem than as a density slope mismatch. For several galaxies the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of inner mass deficit galaxies inferred from kinematic data are incorrect.
109 - Xufen Wu , Pavel Kroupa 2014
Low-acceleration space-time scale invariant dynamics (SID, Milgrom 2009a) predicts two fundamental correlations known from observational galactic dynamics: the baryonic Tully-Fisher relation (BTFR) and a correlation between the observed mass discrepa ncy and acceleration (MDA) in the low acceleration regime for disc galaxies. SID corresponds to the deep MOdified Newtonian Dynamics (MOND) limit. The MDA data emerging in cold/warm dark matter (C/WDM) cosmological simulations disagree significantly with the tight MDA correlation of the observed galaxies. Therefore, the most modern simulated disc galaxies, which are delicately selected to have a quiet merging history in a standard dark-matter-cosmological model, still do not represent the correct rotation curves. Also, the observed tight correlation contradicts the postulated stochastic formation of galaxies in low-mass DM halos. Moreover, we find that SID predicts a baryonic to apparent virial halo (dark matter) mass relation which agrees well with the correlation deduced observationally assuming Newtonian dynamics to be valid, while the baryonic to halo mass relation predicted from CDM models does not. The distribution of the observed ratios of dark-matter halo masses to baryonic masses may be empirical evidence for the external field effect, which is predicted in SID as a consequence of the forces acting between two galaxies depending on the position and mass of a third galaxy. Applying the external field effect, we predict the masses of galaxies in the proximity of the dwarf galaxies in the Miller et al. sample. Classical non-relativistic gravitational dynamics is thus best described as being Milgromian, rather than Newtonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا