ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - A. Pelissetto , M. Testa 2015
The structure of the Lorentz transformations follows purely from the absence of privileged inertial reference frames and the group structure (closure under composition) of the transformations---two assumptions that are simple and physically necessary . The existence of an invariant speed is textit{not} a necessary assumption, and in fact is a consequence of the principle of relativity (though the finite value of this speed must, of course, be obtained from experiment). Von Ignatowsky derived this result in 1911, but it is still not widely known and is absent from most textbooks. Here we present a completely elementary proof of the result, suitable for use in an introductory course in special relativity.
We consider the random-bond +- J Ising model on a square lattice as a function of the temperature T and of the disorder parameter p (p=1 corresponds to the pure Ising model). We investigate the critical behavior along the paramagnetic-ferromagnetic t ransition line at low temperatures, below the temperature of the multicritical Nishimori point at T*= 0.9527(1), p*=0.89083(3). We present finite-size scaling analyses of Monte Carlo results at two temperature values, T=0.645 and T=0.5. The results show that the paramagnetic-ferromagnetic transition line is reentrant for T<T*, that the transitions are continuous and controlled by a strong-disorder fixed point with critical exponents nu=1.50(4) and eta=0.128(8), and beta = 0.095(5). This fixed point is definitely different from the Ising fixed point controlling the paramagnetic-ferromagnetic transitions for T>T*. Our results for the critical exponents are consistent with the hyperscaling relation 2 beta/nu - eta = d - 2 = 0.
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm odynamic quantities can be derived from a set of renormalization-group equations, in which disorder is a marginally irrelevant perturbation at the two-dimensional Ising fixed point. We discuss their solutions, focusing in particular on the universality of the logarithmic corrections arising from the presence of disorder. Then, we present a finite-size scaling analysis of high-statistics Monte Carlo simulations. The numerical results confirm the renormalization-group predictions, and in particular the universality of the logarithmic corrections to the Ising behavior due to quenched dilution.
We consider the three-dimensional $pm J$ model defined on a simple cubic lattice and study its behavior close to the multicritical Nishimori point where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the ferromagnetic-glassy transition lines meet in the T-p phase diagram (p characterizes the disorder distribution and gives the fraction of ferromagnetic bonds). For this purpose we perform Monte Carlo simulations on cubic lattices of size $Lle 32$ and a finite-size scaling analysis of the numerical results. The magnetic-glassy multicritical point is found at $p^*=0.76820(4)$, along the Nishimori line given by $2p-1={rm Tanh}(J/T)$. We determine the renormalization-group dimensions of the operators that control the renormalization-group flow close to the multicritical point, $y_1 = 1.02(5)$, $y_2 = 0.61(2)$, and the susceptibility exponent $eta = -0.114(3)$. The temperature and crossover exponents are $ u=1/y_2=1.64(5)$ and $phi=y_1/y_2 = 1.67(10)$, respectively. We also investigate the model-A dynamics, obtaining the dynamic critical exponent $z = 5.0(5)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا