ترغب بنشر مسار تعليمي؟ اضغط هنا

The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, $T_{rm c}$, increases with the number of CuO$_2$ planes, $n$, in the crystal structure. We compare the magnetic excitation sp ectrum of Bi$_{2+x}$Sr$_{2-x}$CuO$_{6+delta}$ (Bi-2201) and Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10 + delta}$ (Bi-2223), with $n=1$ and $n=3$ respectively, using Cu $L_3$-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the $T_{rm c}$ vs. $n$ scaling. In contrast, the nodal direction exhibits very strongly damped, almost non-dispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.
We present new deep images of the Coma Cluster from the ESA Herschel Space Observatory at wavelengths of 70, 100 and 160 microns, covering an area of 1.75 x 1.0 square degrees encompassing the core and southwest infall region. Our data display an exc ess of sources at flux densities above 100 mJy compared to blank-field surveys, as expected. We use extensive optical spectroscopy of this region to identify cluster members and hence produce cluster luminosity functions in all three photometric bands. We compare our results to the local field galaxy luminosity function, and the luminosity functions from the Herschel Virgo Cluster Survey (HeViCS). We find consistency between the shapes of the Coma and field galaxy luminosity functions at all three wavelengths, however we do not find the same level of agreement with that of the Virgo Cluster.
This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recentl y, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided.
We investigate the high-energy magnetic excitation spectrum of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). Broad, dispersive magnetic excitations ar e observed, with a zone boundary energy of $sim$300 meV and a weak dependence on doping. These excitations are strikingly similar to the bosons proposed to explain the high-energy `kink observed in photoemission. A calculation of the spin-response based on the ARPES-derived electronic structure and YRZ-quasi-particles reproduces the key features of the observed magnetic dispersions with no adjustable parameters. These results show that it is possible to reconcile the magnetic and electronic properties of the cuprates within a unified framework.
382 - Mark Cropper 2012
Euclid-VIS is a large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2019. Together with the near infrared imaging within the NISP instrument it forms the basis of the weak lensing measu rements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2240 sec, VIS will reach to V=24.5 (10{sigma}) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy imaging dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the Euclid Definition phase.
Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red sequence lenticular galaxies and blue cloud galaxies, low mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally-driven gas flows toward the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red sequence or blue cloud galaxies, at fixed stellar mass, with location within the cluster.
68 - Johan H. Knapen 2009
(Shortened) We consider the massive star formation properties, radial profiles, and atomic gas masses of those galaxies in our H alpha Galaxy Survey, a representative sample of the local Universe of 327 disk galaxies, that have close companion galaxi es, in comparison with a matched control sample of galaxies without companions. We find that the presence of a close companion raises the star formation rate by a factor of just under two, while increasing hardly at all the equivalent width of the H alpha emission. This means that although statistically galaxies with close companions form stars at a higher rate, they do this over extended periods of time, and not as bursts. We find no significant increase in the central concentration of the star formation as a result of the presence of a close companion. The fraction of truly interacting or merging galaxies is very small in the local Universe, at around 2%, and possibly 4% of bright galaxies. Most of these interacting galaxies currently have unremarkable star formation properties. We also study the properties of the Survey galaxies with the most extreme values for star formation indicators such as rate, equivalent width, star formation rate per area, and gas depletion timescale. We find that each of these indicators favors a different subset of galaxies, and use this information to discuss critically the possible definitions of the term starburst to describe galaxies with enhanced star formation activity. We conclude that no one starburst definition can be devised which is objective and generally discriminant. Unless one restricts the use of the term starburst to a very small number of galaxies, the term will continue to be used for a heterogeneous and wide-ranging collection of objects with no physical basis for their classification as starburst.
We present observational constraints on the nature of the different core-collapse supernova types through an investigation of the association of their explosion sites with recent star formation, as traced by H-alpha +[NII] line emission. We discuss r esults on the analysed data of the positions of 168 core-collapse supernovae with respect to the H-alpha emission within their host galaxies. From our analysis we find that overall the type II progenitor population does not trace the underlying star formation. Our results are consistent with a significant fraction of SNII arising from progenitor stars of less than 10 solar masses. We find that the supernovae of type Ib show a higher degree of association with HII regions than those of type II (without accurately tracing the emission), while the type Ic population accurately traces the H-alpha emission. This implies that the main core-collapse supernova types form a sequence of increasing progenitor mass, from the type II, to Ib and finally Ic. We find that the type IIn sub-class display a similar degree of association with the line emission to the overall SNII population, implying that at least the majority of these SNe do not arise from the most massive stars. We also find that the small number of SN `impostors within our sample do not trace the star formation of their host galaxies, a result that would not be expected if these events arise from massive Luminous Blue Variable star progenitors.
This paper is a continuation of an ongoing study of the evolutionary processes affecting cluster galaxies. Both CCD R band and H alpha narrow-band imaging was used to determine photometric parameters (m_(r), r_(24), H alpha flux and equivalent width) and derive star formation rates for 227 CGCG galaxies in 8 low-redshift clusters. The galaxy sample is a subset of CGCG galaxies in an objective prism survey of cluster galaxies for H alpha emission. It is found that detection of emission-line galaxies in the OPS is 85%, 70%, and 50% complete at the mean surface brightness values of 1.25 x 10^(-19), 5.19 x 10^(-20), and 1.76 x 10^(-20) W m^(-2) arcsec^(-2), respectively, measured within the R band isophote of 24 mag arcsec^(-2) for the galaxy. The CCD data, together with matched data from a recent H alpha galaxy survey of UGC galaxies within 3000 km s^(-1), will be used for a comparative study of R band and H alpha surface photometry between cluster and field spirals.
We present an analysis of the star formation properties of field galaxies within the local volume out to a recession velocity limit of 3000 km/s. A parent sample of 863 star-forming galaxies is used to calculate a B-band luminosity function. This is then populated with star formation information from a subsample of 327 galaxies, for which we have H alpha imaging, firstly by calibrating a relationship between galaxy B-band luminosity and star formation rate, and secondly by a Monte Carlo simulation of a representative sample of galaxies, in which star formation information is randomly sampled from the observed subset. The total star formation rate density of the local Universe is found to be between 0.016 and 0.023 MSun/yr/cubic Mpc, with the uncertainties being dominated by the internal extinction correction used in converting measured H alpha fluxes to star formation rates. If our internally derived B-band luminosity function is replaced by one from the Sloan Digital Sky Survey blue sequence, the star formation rate densities are approx. 60% of the above values. We also calculate the contribution to the total star formation rate density from galaxies of different luminosities and Hubble T-types. The largest contribution comes from bright galaxies with B absolute mag of approx. -20 mag, and the total contribution from galaxies fainter than -15.5 mag is less than 10%. Almost 60% of the star formation rate density comes from galaxies of types Sb, Sbc or Sc; 9% from galaxies earlier than Sb and 33% from galaxies later than Sc. Finally, 75 - 80% of the total star formation in the local Universe is shown to be occurring in disk regions, defined as being >1 kpc from the centres of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا