ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on core-collapse supernova progenitors from correlations with H-alpha emission

33   0   0.0 ( 0 )
 نشر من قبل Joseph Anderson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observational constraints on the nature of the different core-collapse supernova types through an investigation of the association of their explosion sites with recent star formation, as traced by H-alpha +[NII] line emission. We discuss results on the analysed data of the positions of 168 core-collapse supernovae with respect to the H-alpha emission within their host galaxies. From our analysis we find that overall the type II progenitor population does not trace the underlying star formation. Our results are consistent with a significant fraction of SNII arising from progenitor stars of less than 10 solar masses. We find that the supernovae of type Ib show a higher degree of association with HII regions than those of type II (without accurately tracing the emission), while the type Ic population accurately traces the H-alpha emission. This implies that the main core-collapse supernova types form a sequence of increasing progenitor mass, from the type II, to Ib and finally Ic. We find that the type IIn sub-class display a similar degree of association with the line emission to the overall SNII population, implying that at least the majority of these SNe do not arise from the most massive stars. We also find that the small number of SN `impostors within our sample do not trace the star formation of their host galaxies, a result that would not be expected if these events arise from massive Luminous Blue Variable star progenitors.

قيم البحث

اقرأ أيضاً

We have attempted to constrain the progenitors of all supernova types, through correlations of the positions of historical supernovae with recent star formation, as traced by H-alpha emission. Through pixel statistics we have found that a large fract ion of the SNII population do not show any association with current star formation, which we put down to a runaway fraction of these progenitors. The SNIb/c population accurately traces the H-alpha emission, with some suggestion that the SNIc progenitors show a higher degree of correlation than the SNIb, suggesting higher mass progenitors for the former. Overall the SNIa population only show a weak correlation to the positions of HII regions, but as many as a half may be associated with a young stellar population.
Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~$M_odot$ are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]
I summarize what we have learned about the nature of stars that ultimately explode as core-collapse supernovae from the examination of images taken prior to the explosion. By registering pre-supernova and post-supernova images, usually taken at high resolution using either space-based optical detectors, or ground-based infrared detectors equipped with laser guide star adaptive optics systems, nearly three dozen core-collapse supernovae have now had the properties of their progenitor stars either directly measured or (more commonly) constrained by establishing upper limits on their luminosities. These studies enable direct comparison with stellar evolution models that, in turn, permit estimates of the progenitor stars physical characteristics to be made. I review progenitor characteristics (or constraints) inferred from this work for each of the major core-collapse supernova types (II-Plateau, II-Linear, IIb, IIn, Ib/c), with a particular focus on the analytical techniques used and the processes through which conclusions have been drawn. Brief discussion of a few individual events is also provided, including SN 2005gl, a type IIn supernova that is shown to have had an extremely luminous -- and thus very massive -- progenitor that exploded shortly after a violent, luminous blue variable-like eruption phase, contrary to standard theoretical predictions.
The recent discovery that the Fe-K line luminosities and energy centroids observed in nearby SNRs are a strong discriminant of both progenitor type and circumstellar environment has implications for our understanding of supernova progenitor evolution . Using models for the chemical composition of core-collapse supernova ejecta, we model the dynamics and thermal X-ray emission from shocked ejecta and circumstellar material, modeled as an $r^{-2}$ wind, to ages of 3000 years. We compare the X-ray spectra expected from these models to observations made with the Suzaku satellite. We also model the dynamics and X-ray emission from Type Ia progenitor models. We find a clear distinction in Fe-K line energy centroid between core-collapse and Type Ia models. The core-collapse supernova models predict higher Fe-K line centroid energies than the Type Ia models, in agreement with observations. We argue that the higher line centroids are a consequence of the increased densities found in the circumstellar environment created by the expansion of the slow-moving wind from the massive progenitors.
Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is tho ught to usually be accompanied by the ejection of the stars envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of failed supernovae, and our understanding of the core-collapse explosion mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا