ترغب بنشر مسار تعليمي؟ اضغط هنا

Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

98   0   0.0 ( 0 )
 نشر من قبل Mark Dean
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, $T_{rm c}$, increases with the number of CuO$_2$ planes, $n$, in the crystal structure. We compare the magnetic excitation spectrum of Bi$_{2+x}$Sr$_{2-x}$CuO$_{6+delta}$ (Bi-2201) and Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10 + delta}$ (Bi-2223), with $n=1$ and $n=3$ respectively, using Cu $L_3$-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the $T_{rm c}$ vs. $n$ scaling. In contrast, the nodal direction exhibits very strongly damped, almost non-dispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.

قيم البحث

اقرأ أيضاً

High-temperature superconducting cuprates exhibit an intriguing phenomenology for the low-energy elementary excitations. In particular, an unconventional temperature dependence of the coherent spectral weight (CSW) has been observed in the supercondu cting phase by angle-resolved photoemission spectroscopy (ARPES), both at the antinode where the d-wave paring gap is maximum, as well as along the gapless nodal direction. Here, we combine equilibrium and time-resolved ARPES to track the temperature dependent meltdown of the nodal CSW in Bi-based cuprates with unprecedented sensitivity. We find the nodal suppression of CSW upon increasing temperature to be ubiquitous across single- and double-layer Bi cuprates, and uncorrelated to superconducting and pseudogap onset temperatures. We quantitatively model both the lineshape of the nodal spectral features and the anomalous suppression of CSW within the Fermi-Liquid framework, establishing the key role played by the normal state electrodynamics in the description of nodal quasiparticles in superconducting cuprates.
We discuss the characteristic features of triple Cu-O2 layer cuprates superconductors, by comparing those of single and double layer cuprates superconductors. After a brief introduction to multilayer cuprates and their characteristic properties such as the doping imbalance between the inner and outer Cu-O2 planes (IP and OP, respectively) revealed by nuclear magnetic resonance, we present the experimental results of angle resolved photoemission and Raman scattering spectroscopy for the triple layer Bi2Sr2Ca2Cu3O10+z which showed two different superconducting gaps opening on the IP and OP. The doping dependence of the double peak structure in Raman spectra was found to be qualitatively consistent with that of single and double layer cuprates, if each layer doping for the IP and OP is taken into account. The fact that the IP and OP share the same electronic phase diagram and the same transition temperature (Tc) hints to a coupling between the IP and OP. Moreover, the energies of IP and OP Raman peaks were found to be very large, not scaling with Tc, which can be attributed to the strong influence of the pseudogap of the underdoped IP in triple layer cuprates. These findings suggest that the high Tc and the large gap ratio of triple layer cuprates are realized through a combination of the interlayer coupling between the OP and IP and the interaction between superconductivity and the pseudogap.
We investigated Fe-substitution effects on ferromagnetic fluctuations in the superconducting overdoped and non-superconducting heavily overdoped regimes of the Bi-2201 cuprates by the magnetization and electrical-resistivity measurements. It was foun d that the spin-glass state was induced at low temperatures by the Fe substitution. The Curie constant and the effective Bohr magneton, estimated from the magnetic susceptibility, as well as the dimensionality of the ferromagnetic fluctuations from the resistivity, suggest the enhancement of the ferromagnetic fluctuations owing to the Fe substitution. A ferromagnetic spin-cluster model is proposed in the heavily overdoped regime of Bi-2201, while an antiferromagnetic spin-cluster model has been proposed in the overdoped regime of Bi-2201 [Hiraka et al., Phys. Rev. B 81, 144501 (2010)].
286 - L. Dudy , A. Krapf , H. Dwelk 2010
We report characterization results by energy dispersive x-ray analysis and AC-susceptibility for a statistically relevant number of single layer Bi-cuprate single crystals. We show that the two structurally quite different modifications of the single -layered Bi-cuprate, namely (La,Pb=0.4)-Bi2201 and La-Bi2201, exhibit anomalies in the superconducting transition temperature at certain hole doping, e.g. at 1/8 holes per Cu. These doping values agree well with the magic doping fractions found in the temperature dependent resistance of LSCO by Komiya et al. This new set of findings suggests that all these anomalies are generic for the hole-doped high-temperature superconductors.
Neutron scattering measurements of the magnetic excitations in single crystals of antiferromagnetic CaFe2As2 reveal steeply dispersive and well-defined spin waves up to an energy of 100 meV. Magnetic excitations above 100 meV and up to the maximum en ergy of 200 meV are however broader in energy and momentum than the experimental resolution. While the low energy modes can be fit to a Heisenberg model, the total spectrum cannot be described as arising from excitations of a local moment system. Ab-initio calculations of the dynamic magnetic susceptibility suggest that the high energy behavior is dominated by the damping of spin waves by particle-hole excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا