ترغب بنشر مسار تعليمي؟ اضغط هنا

High-energy magnetic excitations in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$: Towards a unified description of the electronic and magnetic degrees of freedom in the cuprates

210   0   0.0 ( 0 )
 نشر من قبل Mark Dean
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the high-energy magnetic excitation spectrum of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). Broad, dispersive magnetic excitations are observed, with a zone boundary energy of $sim$300 meV and a weak dependence on doping. These excitations are strikingly similar to the bosons proposed to explain the high-energy `kink observed in photoemission. A calculation of the spin-response based on the ARPES-derived electronic structure and YRZ-quasi-particles reproduces the key features of the observed magnetic dispersions with no adjustable parameters. These results show that it is possible to reconcile the magnetic and electronic properties of the cuprates within a unified framework.

قيم البحث

اقرأ أيضاً

Bi-based cuprate superconductors are important materials for both fundamental research and applications. As in other cuprates, the superconducting phase in the Bi compounds lies close to an antiferromagnetic phase. Our density functional theory calcu lations based on the strongly-constrained-and-appropriately-normed (SCAN) exchange correlation functional in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ reveal the persistence of magnetic moments on the copper ions for oxygen concentrations ranging from the pristine phase to the optimally hole-doped compound. We also find the existence of ferrimagnetic solutions in the heavily doped compounds, which are expected to suppress superconductivity.
101 - Yu He , Su-Di Chen , Zi-Xiang Li 2020
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma gnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true in cuprate superconductors in which mutual relationships among superconductivity, pseudogap, and broken-spatial-symmetry states have attracted much attention. Here we observe energy and momentum dependent bipartite electronic superstructures in the vortex core of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using spectroscopic-imaging scanning tunneling microscopy (SI-STM). In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we show that the quasiparticle scattering off vortices generates the electronic superstructure known as vortex checkerboard. In the high-energy region where the pseudogap develops, vortices amplify the broken-spatial-symmetry patterns that preexist in zero field. These data reveal canonical d-wave superconductivity near the node, yet competition between superconductivity and broken-spatial-symmetry states near the antinode.
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup erconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.
X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefol d increase in the unit cell dimension along the {bf b}-direction. The strongest scattering comes from the well known (H, K$pm$ 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, $xi_c$$sim$20 $AA$ in the {bf c} direction, and of $xi_b$$sim$ 185 $AA$ parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K$pm$ 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using STM topography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا